Header

UZH-Logo

Maintenance Infos

Influence of component positioning on impingement in conventional total shoulder arthroplasty - Zurich Open Repository and Archive


Favre, P; Moor, B; Snedeker, J G; Gerber, C (2008). Influence of component positioning on impingement in conventional total shoulder arthroplasty. Clinical Biomechanics, 23(2):175-183.

Abstract

BACKGROUND: Clinical experience suggests that component impingement can lead to eccentric implant loading and thereby cause glenoid loosening in conventional total shoulder arthroplasty. This study tests the hypothesis that certain implant component positioning configurations may lead to impingement within the physiological range of motion. METHODS: A rigid-body model of the shoulder comprising the scapula and humerus was constructed. Within this 3D model, a commercially available total shoulder arthroplasty implant was positioned according to manufacturer guidelines. The configuration was modified around this default position to investigate the associated angle of inferior and superior impingement during glenohumeral elevation, as well as in lateral impingement during axial rotation at both 0 degrees and 60 degrees of glenohumeral elevation. Glenoid component size, version, inclination and inferior-superior offset as well as humeral component size, torsion, inclination, offset and height were examined. The influence of the humeral calcar anatomy was also investigated. FINDINGS: Certain implant configurations caused component impingement in the physiological range of motion. The most sensitive parameters affecting impingement were: (1) the inclination of the glenoid component, (2) the inferior-superior position of the humeral component along the resection line and (3) the prominence of the humeral calcar. Glenoid offset and inclination and humeral head offset and height directly affected subacromial impingement. INTERPRETATION: This study suggests that several intraoperatively adjustable implant positioning parameters can influence the likelihood of implant impingement in conventional total shoulder arthroplasty, and that the geometry of the humeral calcar should be taken into consideration when designing an operative strategy for shoulder joint replacement.

Abstract

BACKGROUND: Clinical experience suggests that component impingement can lead to eccentric implant loading and thereby cause glenoid loosening in conventional total shoulder arthroplasty. This study tests the hypothesis that certain implant component positioning configurations may lead to impingement within the physiological range of motion. METHODS: A rigid-body model of the shoulder comprising the scapula and humerus was constructed. Within this 3D model, a commercially available total shoulder arthroplasty implant was positioned according to manufacturer guidelines. The configuration was modified around this default position to investigate the associated angle of inferior and superior impingement during glenohumeral elevation, as well as in lateral impingement during axial rotation at both 0 degrees and 60 degrees of glenohumeral elevation. Glenoid component size, version, inclination and inferior-superior offset as well as humeral component size, torsion, inclination, offset and height were examined. The influence of the humeral calcar anatomy was also investigated. FINDINGS: Certain implant configurations caused component impingement in the physiological range of motion. The most sensitive parameters affecting impingement were: (1) the inclination of the glenoid component, (2) the inferior-superior position of the humeral component along the resection line and (3) the prominence of the humeral calcar. Glenoid offset and inclination and humeral head offset and height directly affected subacromial impingement. INTERPRETATION: This study suggests that several intraoperatively adjustable implant positioning parameters can influence the likelihood of implant impingement in conventional total shoulder arthroplasty, and that the geometry of the humeral calcar should be taken into consideration when designing an operative strategy for shoulder joint replacement.

Citations

20 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Jan 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:February 2008
Deposited On:24 Jan 2009 19:22
Last Modified:05 Apr 2016 12:53
Publisher:Elsevier
ISSN:0268-0033
Publisher DOI:https://doi.org/10.1016/j.clinbiomech.2007.09.009
PubMed ID:17983693

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations