Temporomandibular joint loading patterns related to joint morphology: a theoretical study

Colombo, V; Palla, S; Gallo, L M

Abstract: It is unclear which aspects of the temporomandibular joint (TMJ) anatomy and/or kinematics determine shape and location of disk-compressive areas (stress field). The aim of this study was a quantitative analysis of TMJ anatomy to predict stress field path direction. Twenty-five asymptomatic TMJs (12 females and 13 males, aged 20-38 years) were tracked during unloaded opening/closing cycles. All TMJs were magnetic resonance (MR) imaged, reconstructed and animated with the recorded kinematics. Quantitative morphological parameters were calculated and entered into cross-validated multivariate discriminant analysis. Stress field paths during jaw opening were classified as mediolateral (ML) in 14 (9 females and 5 males) and lateromedial (LM) in 11 joints (3 females and 8 males). Curvature and incongruence as well as the dorsoventral position of the condyle in the fossa showed statistically significant differences (Mann-Whitney U test, p < 0.05). A combination of the lateral incongruence, the distance from the posterior slope of the eminence as well as the maximum posterior sagittal curvature enabled to correctly predict the direction of stress field paths in 92% of cases. In particular, ML type joints had laterally more congruent condyles/fossae and condyles more distant from the posterior slope of the eminence than LM type joints. Within the limits of this study, TMJ morphology seems to determine stress field path patterns.

DOI: https://doi.org/10.1159/000113408

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-11372
Accepted Version

Originally published at:
DOI: https://doi.org/10.1159/000113408
TMJ loading patterns related to joint morphology: a theoretical study

Vera Colombo, Sandro Palla and Luigi M. Gallo*

Clinic for Masticatory Disorders and Complete Dentures,
Center for Oral Medicine, Dental and Maxillo-Facial Surgery
University of Zurich, Switzerland

Plattenstrasse 11
CH-8032 Zurich, Switzerland
Phone +41-44-6343226
Fax +41-44-6344302
e-mail lugi@zui.uzh.ch

Short title: TMJ loading and morphology

Keywords:
Biomechanics
Kinematics
Functional anatomy
Temporomandibular disorders
Temporomandibular joint

Number of words in the abstract: 204
Number of words in the text: 3894
Number of tables: 3
Number of figures: 7
Number of references: 36

*Corresponding author
It is unclear which aspects of temporomandibular joint (TMJ) anatomy and/or kinematics determine shape and location of disc compressive areas (stress-field). Aim of this study was a quantitative analysis of TMJ anatomy to predict stress-field paths direction. Twenty-five asymptomatic TMJs (12 f & 13 m, aged 20-38) were tracked during unloaded opening-closing cycles. All TMJs were magnetic resonance (MR) imaged, reconstructed and animated with the recorded kinematics. Quantitative morphological parameters were calculated and input to cross-validated multivariate discriminant analysis. Stress-field paths during jaw opening were classified as mediolateral (ML) in 14 (9 f & 5 m) and lateromedial (LM) in 11 joints (3 f & 8 m). Curvature and incongruence as well as the dorsoventral position of the condyle in the fossa showed statistically significant differences (Mann-Whitney U-test, p<0.05). The lateral incongruence, the distance from the posterior slope of the eminence as well as the maximum posterior sagittal curvature sufficed alone together to correctly predict the direction of stress-field paths in 92% of cases. In particular, ML type joints had laterally more congruent condyles/fossae and condyles more distant from the posterior slope of the eminence than LM type joints. Within the limits of this study, TMJ morphology seems determinant for the stress-field path patterns.

Introduction

The study of joint biomechanics is important because dysfunction and breakdown of joint components seem to be, at least partially, of mechanical origin. Diarthrodial joints, such as the knee and the temporomandibular joint (TMJ), have been the topic of extensive research due to the impact of their pathologies on everyday activities, such as gait and orofacial function. Both types of joint have similarities, e.g. kinematics with six degrees-of-freedom, high incongruence of the articular surfaces, presence of fibrocartilaginous menisci, and influence of unilateral dysfunction on the contralateral joint. A thorough understanding of the pathomechanics of degenerative joint diseases, i.e. osteoarthritis (OA), of these types of joints needs to consider kinematic function, bone and cartilage morphology and biological response (Andriacchi et al., 2004).

The accurate analysis of the relationship between the joint articular surfaces permits the assessment of contact and compression areas and therefore the strains and stresses
undergone by soft and hard tissues that might lead to OA. This could help identifying subjects at risk of developing cartilage degeneration. It could also help tissue-engineers to design parts able to withstand realistic tissue deformations.

Several studies simulated or measured the cartilage loading patterns under static conditions in the knee (Fujikawa et al., 1983; Ateshian et al., 1994) as well as in the TMJ (Beek et al., 2001; Tanaka et al., 2004; Hirose et al., 2006). Nowadays, it is recognized that the mechanism of cartilage loading and degeneration needs to be addressed also dynamically and activity-dependent (Andriacchi et al., 2000; Andriacchi et al., 2003).

The methods developed at our clinic for jaw tracking (Mesqui et al., 1986; Airoldi, 1994; Gallo et al., 1997; Gallo et al., 2000a) and for combining magnetic resonance (MR) images with jaw motion (Krebs et al., 1995; Krebs, 1997; Palla et al., 2003; Fushima et al., 2003) yield a highly accurate dynamic insight into the TMJ articular space. This method has been used to demonstrate that during unloaded mandibular movements mediolateral stress-field translation occurs in the TMJ disc and that in 65% of 48 TMJs from 30 asymptomatic subjects the stress-field paths moved mediolaterally (Fig. 1a) and in 20% lateromedially (Fig. 1b), the majority of the joints being exposed laterally to higher stress-field translation velocities (Gallo et al., 2000b; Gallo et al., 2001). Tractional forces parallel to the joint surfaces are the resultant of frictional and plowing forces (Linn, 1967). Whereas frictional forces have been shown to be very low (Nickel and McLachlan, 1994b), the plowing forces, i.e. the tangential forces due to the displacement of compressive deformation through the cartilage matrix, resulting from stress-field translation (Waldman and Bryant, 1997) might contribute to TMJ disc damage since this tissue is less resistant to forces directed mediolaterally than to those directed dorsoventrally (Beatty et al., 2001). These studies led also to the hypothesis that the higher mechanical work produced by plowing found in some joints might identify subjects at risk for disc fatigue that could increase the likelihood of OA (Nickel and McLachlan, 1994a; Nickel et al., 2001).

Furthermore, mediolateral stress-field translation in clicking TMJs during jaw opening/closing is significantly larger than in asymptomatic joints and the stress-field paths are non-coincedent during the opening and closing phases (Gossi et al., 2004). This study
also suggested that in clicking TMJs the minimum intraarticular distance is smaller than in controls, which could imply a thinning of the disc and a flattening of the bony surfaces. These results are consistent with the observations of discal and condylar remodeling in static MR images in clicking TMJs (Rao et al., 1990; Chen et al., 2002). Since most deformed discs analyzed in these works were stretched laterally, it is reasonable to hypothesize that the location and the characteristics of stress-fields translation might influence the location of disc damage.

To date it is unknown which aspects of TMJ anatomy and kinematics influence the stress-field patterns during function. Aim of this study was therefore to analyze quantitatively whether TMJ morphology influences the direction of the stress-field paths during unloaded jaw opening/closing movements.

Materials and methods

Subjects

The data from sixteen healthy subjects (9 males, 7 females, 20 to 38 years of age), for a total of 25 normal TMJs as determined by history and clinical examination, were analyzed. The subjects were selected from the pool of recordings of our clinic. Potential subjects had been interviewed in order to exclude a myoarthropathy of the masticatory system or other diseases according to the clinic's protocol: pain or sounds in the TMJ, pain or fatigue in the masticatory muscles, impaired jaw mobility, facial pain, headache and toothache [details in previous work (Palla, 1986; Salaorni and Palla, 1994)]. The subjects with a negative history underwent a clinical examination: measurement of active and passive mandibular mobility; palpation and auscultation of the TMJs; palpation of masticatory, neck and shoulder muscles [details in previous work (Gallo et al., 1997)]. Inclusion criteria were: maximum opening >40 mm (overbite included), mandibular deviation and/or deflection on opening/closing <2 mm, protrusion and laterotrusion >7 mm, and difference between active and passive maximum opening <2 mm, absence of tenderness to palpation of the TMJ area and masticatory as well as neck muscles (Palla, 1986). Wear facets were accepted, provided the provocation test was negative (Krogh-Poulsen, 1973). An informed
verbal consent to participate in the study was obtained from all subjects. The study protocol was approved by the University of Zurich Institutional Review Board. Care was taken to have almost the same number of mediolateral and lateromedial stress-field patterns according to the method of a previous study (Gallo et al., 2001). Of the 25 TMJs, 14 (9 belonging to females and 5 belonging to males) had a stress-field path running mediolaterally whereas 11 (3 belonging to females and 8 belonging to males) had a lateromedial stress-field path during jaw opening. The mean age of the subjects did not differ between the two pattern types, however, significantly more females had a ML pattern and significantly more males a LM one according to a χ^2-test ($p<0.05$).

Reconstruction and animation of the TMJ

For reconstruction and animation (*dynamic stereometry*) of the TMJ, anatomic software models from MR imaging were coupled with the real kinematic data of each joint. MR scans, consisting of 14 sagittal views made perpendicular to the condylar long axis, were recorded by means of a 1.5 T system (Gyroscan ACS-II Philips Medical System, Best, Netherlands) with the subject biting on a monobloc. This was rigidly connected to an external frame reference system, which served to transform the MR coordinates into those of the jaw tracker. This consisted of 3 linear cameras recording the relative temporospatial changes of 2 sets of 3 light emitting diodes attached to mandibular and maxillary teeth (Mesqui et al., 1986; Airoldi et al., 1994). The MR images were segmented by means of an interactive line editor to obtain the contours of mandibular condyle and fossa that were then joined into wire-frames representing the articulating surfaces (Krebs et al., 1995; Krebs, 1997; Gossi et al., 2004). Motion data were applied to the reconstructed anatomical structures by means of custom-written software running on a Windows™ personal computer. Errors in the method have been reported (Krebs, 1997) and are within the range of 1 mm.

Experimental procedure

The study protocol required first the MR recording. At a subsequent visit, jaw movement was recorded for each subject using the jaw tracker while performing 10 cycles of symmetric jaw opening/closing from maximum intercuspsation to maximum opening paced
at 1 Hz. For each joint, jaw tracking was performed on the ipsilateral side in order to minimize geometric noise (Airoldi et al., 1994).

Data analysis

The center of the stress-field were approximated as the area of minimum condyle-fossa distance (Nickel and McLachlan, 1994c; Gossi et al., 2004). Therefore, for each sampling time of mandibular motion, the 30 smallest adjacent condyle-fossa distances, measured between polygon vertices, were identified. The centroid of the area defined by these 30 minimum distances was calculated and determined the position of the stress-field. The components of the position of the stress-field were smoothed by uniform averaging of the sampled values over 84 ms.

The anatomical features were analyzed with the mandible at maximum intercuspation by first choosing reference planes in every TMJ according to anatomic landmarks. The *coronal plane* κ was defined as the plane running through the medial pole (CMP), the lateral pole (CLP) and the apex (CAP) of the condyle (Fig. 2a), the *transversal plane* τ through the condylar poles and perpendicular to the coronal plane (Fig. 2a) and the *sagittal plane* σ perpendicular to κ and τ (Fig. 2b). Eight further sagittal planes were then uniformly spaced through the condyle (Fig. 2c and 2d). Sections of condyle and fossa were obtained by intersecting the wire-frame with the eight planes defined. These sections were then interpolated by means of splines that allowed determining normals, tangents and curvatures of the sections. Note that the reference planes used do not exactly coincide with the anatomical planes: they are slightly angulated according to the condylar orientation. The names of the reference planes have been chosen for simplicity’s sake.

The morphological description of the TMJs was performed considering anatomical features that likely create compressive areas, in particular the curvature of the articular surfaces. For instance, a more curved convex surface (condyle) could create a compression area if pushed against a less curved concave surface (fossa). For the same reason, further parameters describe the intraarticular distances, the incongruence (similarity) of the articular surfaces, as well as the steepness of the fossa that could also cause a compression if steeper and thus closer to the moving condyle.
Therefore, following parameters were calculated in the different planes and sections in order to describe the shapes of condyle and fossa and their relationship:

Coronal plane κ

- *Distance between the condylar poles CMP and CLP (\(d_{κML}\)).* This was a measure of the condylar width (Fig. 3a).

- *Curvature along the superior arch of condyle and fossa.* Twenty equidistant points were chosen along the cranial part of the condylar contour between both poles CMP and CLP as well as along the fossa contour (Fig. 3b). The curvature values of the condyle (\(C_{κC}\)) and of the fossa (\(C_{κF}\)) \((i=1\) to \(20)\) were determined for each point and were expressed in \([\text{mm}^{-1}]\), being the inverse of the radius of curvature in each point. The curvature was therefore zero for a straight segment, positive for a convex and negative for a concave segment. For data reduction purposes, we considered the maximum curvature of the condyle \(C_{κC_{\text{max}}}\).

- *Incongruence between condyle and fossa.* For this parameter we utilized the same method as described in the literature (Nickel and McLachlan, 1994a). Along the cranial part of the condylar contour we determined a set of seventeen points CGPi \((i=1\) to \(17)\) by dividing the intracondylar axis (the straight segment between CMP and CLP) into eighteen equal intervals and by projecting them onto the condylar contour (Fig. 3c). Therefore, the condylar poles CMP and CLP were not considered. For each point CGPi we drew the straight line, normal to the condyle, that intersected the fossa in a point FGPi at distance \(d_{κCF}\) from CGPi. For each pair of points (one on the condyle and one on the fossa) the local incongruence \(G_{κCF}\) was determined according to the formula:

\[
G_{κCF} = d_{CF} - \frac{1}{n} \sum_{i=1}^{n} d_{CFi}.
\]

The incongruence was 0 mm for congruent contours (*i.e. with the same shape*), smaller than 0 for distances between condyle and fossa smaller than their overall average \(d_{CF}\) and greater than 0 for distances between condyle and fossa larger than average. For data reduction purposes, the incongruence was averaged on the three lateral, central and medial sections, thus yielding the parameters \(G_{κCFL}\), \(G_{κCFC}\) and \(G_{κCFM}\).
Transversal plane τ

- **Curvature of the anterior and posterior condylar arch.** Similarly to the coronal plane, twenty equidistant points were chosen along the anterior part of the condylar contour between both poles CMP and CLP and the curvature value of the anterior contour ($C_{\tau A_i}$) ($i=1$ to 20) was determined for each point (Fig. 4a and b). The same was done for the values along the posterior part of the condylar contour ($C_{\tau P_i}$) ($i=1$ to 20). For data reduction purposes, we considered the maximum anterior curvature of the condyle $C_{\tau A_{max}}$.

Sagittal sections σ

- **Slope of the fossa.** The slope of the fossa S_{σ_j} ($j=1$ to 8) was defined on each sagittal section as the angle between the tangent to the steepest point of the fossa contour between its most cranial and its most caudal point and the coronal plane (Fig. 5a). For data reduction purposes, we then considered the average of the values of the slopes of the fossa over all sagittal sections $S_{\sigma_{avg}}$.

- **Distance between the anterior face of the condyle and the fossa.** The center of the condyle was defined on each section as lying on the intersection of a) the plane κ_1 running through condylar the apex CAP and b) the transversal plane τ. The distance between the anterior face of the condyle and the fossa $d_{\sigma ACF_j}$ ($j=1$ to 8) was determined on the line at 45° from the line connecting the condylar center and apex (Fig. 5b). For data reduction purposes, the distance $d_{\sigma ACF_j}$ was averaged on the two lateral, central and medial sagittal sections, thus yielding the parameters $d_{\sigma ACFL}$, $d_{\sigma ACFC}$ and $d_{\sigma ACFM}$.

- **Curvature of the anterior and posterior condylar contour.** The anterior and posterior condylar curvature values $C_{\sigma A_{ij}}$ and $C_{\sigma P_{ij}}$ ($i=1$ to 20, $j=1$ to 8) were determined for each of 20 equally spaced points on the anterior and posterior condylar portion of each of the eight sagittal sections. (Fig. 5c). For data reduction purposes, we considered only the maximum of the anterior curvatures of the condyle $C_{\sigma A_{max}}$ averaged on each section.
Statistical analysis

Univariate analyses of the parameters (i.e. $C_{\kappa_{\text{C}\,\text{max}}}$, $G_{\kappa_{\text{CFL}}}$, $G_{\kappa_{\text{CFC}}}$, $G_{\kappa_{\text{CFM}}}$, $C_{\tau_{\text{A}\,\text{max}}}$, $S_{\sigma_{\text{avg}}}$, $d_{d_{\sigma_{\text{ACFL}}}}$, $d_{d_{\sigma_{\text{ACFC}}}}$, $d_{d_{\sigma_{\text{ACFM}}}}$, and $C_{\sigma_{\text{A}\,\text{max}}}$) were performed by means of non parametric Wilcoxon-Mann-Whitney tests between the ML and LM groups (SPSS™ 12.0.1 for Windows™). Furthermore, a multivariate discriminant analysis (STATGRAPHICS Centurion XV™) was performed on all parameters determined. This is an algorithm that helps predict the class based on the influence of the different parameters on the classification of the two types of stress-field patterns.

Results

Table 2 shows the medians as well as the first and third quartiles of the parameters summarizing TMJ morphology as well as the p-values of the statistical tests between the groups with stress-fields running mediolaterally (ML) and lateromedially (LM) during unloaded jaw-opening. The distance between the condylar poles ($d_{\kappa_{\text{ML}}}$) is box-plotted in Fig. 6a (the single values are listed in Table 1). The distance was significantly smaller ($p=0.035$) by approximately 2 mm in the ML (16.3 ± 2.0 mm) than in the LM group (18.2 ± 1.8 mm).

In the coronal plane κ the maximum curvature of the condyle ($C_{\kappa_{\text{C}\,\text{max}}}$) did not differ significantly between the ML and LM groups. This was the case also for the incongruence between condyle and fossa in the medial and central parts ($G_{\kappa_{\text{CFM}}}$ and $G_{\kappa_{\text{CFC}}}$) but not in the lateral part ($G_{\kappa_{\text{CFL}}}$). The incongruence values were significantly closer to 0 in the ML than in the LM group ($p=0.003$), indicating a smaller distance of the condyle to the fossa in the lateral part of the joint for the LM group (Fig. 6b).

In the transversal plane τ the maximum curvature of the anterior condylar arch ($C_{\tau_{\text{A}\,\text{max}}}$) did not differ significantly between the ML and LM groups.

Over all sagittal sections the condyles in the LM group were closer to the posterior slope of the eminence in the lateral part of the joint ($d_{d_{\sigma_{\text{ACFL}}}}$) by round 1 mm than in the ML group ($p=0.004$) (Fig. 6c). Also in the sagittal sections, the condyles in the ML group were more curved anteriorly ($C_{\sigma_{\text{A}\,\text{max}}}$) than the ones in the LM group ($p=0.002$). No significant
differences of the average fossa steepness ($S\sigma_{avg}$) were found between the ML and LM group.

Multivariate discriminant analysis (jackknifed) was able to assign 92% of the TMJs to the correct stress-field path group only by using a) the coronal incongruence between condyle and fossa of the most lateral joint part ($G\kappa_{CF\ 17}$), b) the minimum distance between the condyle and the posterior slope of the eminence ($d\sigma_{ACF\ min}$) and c) the maximum posterior condylar curvature in the sagittal sections ($C\sigma_{P\ max}$). The parameter mostly contributing to group separation was $G\kappa_{CF\ 17}$, the least contributing was $C\sigma_{P\ max}$. If only the first two parameters were used for classification, the correct classification rate decreased slightly to 88%. Fig. 6d shows the distribution of the classification function for the ML and LM groups where the two cases of the ML group incorrectly classified are visible – almost superimposed - below the horizontal red line.

Discussion

This study was a first attempt at analyzing which aspects of TMJ morphology might explain different stress-field patterns. In former studies, stress-fields have been shown to translate perpendicularly to the TMJ disc fibers with a great variability in energy expenditure for cartilage deformation (plowing effect) (Gallo et al., 2000b; Gossi et al., 2004). Higher energy density localized in areas prone to disc failure (Oberg et al., 1971; Stratmann et al., 1996) would suggest a mechanical wear of the tissues. Thus, TMJ morphologies more likely to concentrate higher energy densities in these areas could help identifying subjects at risk of cartilage lesions.

It has to be noted that this study focused neither on the classification criteria for the stress-field paths — which are the topic of another study — nor on the distribution of the patterns across genders. For this analysis, care was taken at having a balanced sample of TMJs from both types, i.e. with stress-field trace running mediolaterally (ML) and lateromedially (LM) at jaw opening. Since the data had already been collected, it was not possible to balance the genders between the two groups, females being more represented in the ML group and males more represented in the LM group. Since mandibular anatomy
in our patient groups is larger in males than in females we decided to leave out condylar width for further analysis and classification.

Morphological analysis is a complex issue that requires first a meticulous visual observation in order to first assess quantitatively common aspects and differences in shape. For this reason, reference planes were defined that would be mostly insensitive to the anatomical variability of human TMJs, as observed in the present data and shown in the literature (Anagnostopoulou and Venieratos, 1986). One further issue is that a quantitative geometric description of anatomical objects can generate a plethora of punctual parameters that demand data reduction. This study has therefore been performed with a limited number of parameters that were supposed to be anatomically meaningful and sufficiently robust for statistically processing.

This data reduction provided some statistically significant differences in the TMJ morphology of both groups: a) in the LM group the condyle was closer to the fossa in the lateral part both in the coronal as well as sagittal plane whereas b) in the ML group the condyles were more curved anteriorly. The second finding might indicate frontally more convex condyles in the ML group and flatter ones in the LM group.

The condyles being laterally closer to the fossa in the LM group might be due to several reasons, e.g. a thinner or deformed disc, a condyle thicker laterally than medially (Fig. 7) or a stronger angulation of the main condylar axis in mediolateral direction. A thinner or deformed disc might prelude abnormal conditions (Chen et al., 2002) but cannot be demonstrated by the data presently available. A condyle whose dimensions in dorsoventral direction are larger in the lateral part than in the medial part could reduce the lateral joint space more than a cylindrically shaped condyle. This could also happen if the main condylar axis forms a larger angle with the mediolateral direction. With the present techniques, we do not know whether these findings might be due to remodeling or other reasons.

The significant differences found in the parameters appear not to be due to methodological bias, such as e.g. the side of jaw tracking or any other type of measurement asymmetry. As a matter of fact, jaw tracking had been performed always ipsilaterally to the joint
analyzed, and the stress-field patterns found were of the same type (and therefore symmetrical) in both joints of all but one subject studied bilaterally (Tab. 1). Furthermore, there were no side differences in the parameters of the subjects recorded bilaterally as checked by a Wilcoxon signed rank test (p > 0.05).

Multivariate discriminant analysis permits the determination of the parameters that mostly contribute to case classification. For the sample analyzed, a 92% separation of the two groups was obtained. Also here it is interesting to notice that the incongruence between condyle and fossa in the most lateral part of the joints (G_{17}) and the closest condyle-fossa distance $d_{ACF\, \text{min}}$ mostly contributed to this classification. This is a further confirmation that the two stress-field pattern groups are mostly discriminated by the location of the minimum joint space. Not considering the third parameter that describes the posterior aspect of the condyle does not have a strong influence on the rate of correct classification (92%) by lowering it by one subject to 88%.

In order to check the morphological meaning of our findings we constructed two TMJ models according to the morphometric parameters in the ML and the LM group (Fig. 8). The TMJ of the ML type was modeled with a rounded condyle and a relatively flat fossa, whereas the TMJ of the LM type was modeled with a more cylindrical condyle, therefore flatter, and a deeper fossa, in particular with closer distance to the condyle in the lateral part. The jaw opening/closing movement imposed identically to each condyle was constructed as a standard symmetric rotation/translation according to the typical patterns of asymptomatic subjects (Merlini and Palla, 1988), with the paths of the incisors and of the condylar center lying on circular arcs in the sagittal plane. The main condylar axes were angulated at 15° relative to the transversal direction. Thereafter, the stress-field paths were calculated as in former studies. In figure 8 one can observe how the stress-field paths tend to be similar to those observed in vivo. The TMJ model of ML type had a stress-field pattern running from the middle to the lateral side of the joint during jaw opening and the model of the LM type having a stress-field path running from the lateral part of the joint towards the middle. Therefore it seems that the morphometric parameters are an important factor that can differentiate between the two different stress-field patterns.
One obvious limitation of this study is the rather low number of joints examined due to the relative complexity for data acquisition. Furthermore, the morphometric parameters were determined only for the static position of the joints without taking into account the kinematics. However, the high degree of separation of the two groups as well as the high significance of some parameters seem to indicate that joint morphology – and therefore growth and remodeling - may play an important role in the areas that are more loaded. Prospective studies are nevertheless needed to show the validity of joint classifications. Furthermore, studies on joint loading related to joint kinematics will elucidate also the role of the quality of mandibular motion in joint loading.

Acknowledgment

This work was supported by the grant number 325200-110067 of the Swiss National Science Foundation, Berne, Switzerland.
References

Tables

Table 1. Demographic data, classification of the stress-field paths (ML: mediolateral direction and LM: lateromedial direction during jaw opening) and distance between the medial and lateral poles (condyle width $d_{\kappa_{ML}}$).

<table>
<thead>
<tr>
<th>Subject #</th>
<th>gender</th>
<th>Age years</th>
<th>TMJ # left</th>
<th>Path left</th>
<th>TMJ # right</th>
<th>Path right</th>
<th>Condyle width $d_{\kappa_{ML}}$ [mm] left</th>
<th>Condyle width $d_{\kappa_{ML}}$ [mm] right</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>32</td>
<td>1</td>
<td>LM</td>
<td>2</td>
<td>LM</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>28</td>
<td>2</td>
<td>LM</td>
<td>3</td>
<td>LM</td>
<td>20.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>31</td>
<td>3</td>
<td>LM</td>
<td>4</td>
<td>LM</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>38</td>
<td>4</td>
<td>ML</td>
<td>5</td>
<td>ML</td>
<td>16.6</td>
<td>16.3</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>28</td>
<td>6</td>
<td>ML</td>
<td>7</td>
<td>ML</td>
<td>16.6</td>
<td>16.7</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>29</td>
<td>8</td>
<td>LM</td>
<td>9</td>
<td>LM</td>
<td>18.9</td>
<td>20.7</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>36</td>
<td>10</td>
<td>LM</td>
<td>11</td>
<td>ML</td>
<td>16.6</td>
<td>18.8</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>24</td>
<td>12</td>
<td>LM</td>
<td>13</td>
<td>LM</td>
<td>16.6</td>
<td>17.0</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>23</td>
<td>14</td>
<td>ML</td>
<td>15</td>
<td>ML</td>
<td>14.8</td>
<td>14.4</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>24</td>
<td>16</td>
<td>LM</td>
<td>17</td>
<td>LM</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>20</td>
<td>18</td>
<td>ML</td>
<td>19</td>
<td>LM</td>
<td>13.2</td>
<td>14.5</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>27</td>
<td>19</td>
<td>LM</td>
<td>20</td>
<td>ML</td>
<td>16.6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>31</td>
<td>20</td>
<td>ML</td>
<td>21</td>
<td>ML</td>
<td>20.5</td>
<td>18.7</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>22</td>
<td>22</td>
<td>ML</td>
<td>23</td>
<td>ML</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>24</td>
<td>23</td>
<td>ML</td>
<td>24</td>
<td>ML</td>
<td>16.3</td>
<td>16.7</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>26</td>
<td>25</td>
<td>LM</td>
<td>26</td>
<td>LM</td>
<td>18.6</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Parameters describing TMJ morphology in the coronal κ, transversal τ and sagittal σ planes and p-values according to a Mann-Whitney test (m: medial, c: central, l: lateral; ML: mediolateral direction and LM: lateromedial direction; medians, and 1^{st} and 3^{rd} quartiles in brackets).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ML</th>
<th>LM</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curvature condyle $C_{K \kappa_{\text{max}}} [\text{mm}^{-1}]$</td>
<td>0.8 [0.6; 0.9]</td>
<td>0.6 [0.5; 0.8]</td>
<td>0.380</td>
</tr>
<tr>
<td>Incongruence fossa-condyle (m) $G_{K \kappa CF_{M}} [\text{mm}]$</td>
<td>-0.2 [-0.8; -0.1]</td>
<td>-0.0 [-0.6; 0.3]</td>
<td>0.324</td>
</tr>
<tr>
<td>Incongruence fossa-condyle (c) $G_{K \kappa CF_{C}} [\text{mm}]$</td>
<td>0.2 [-0.2; 0.4]</td>
<td>0.2 [0.0; 0.3]</td>
<td>0.622</td>
</tr>
<tr>
<td>Incongruence fossa-condyle (l) $G_{K \kappa CF_{L}} [\text{mm}]$</td>
<td>-0.4 [-0.6; 0.4]</td>
<td>-1.1 [-1.1; -0.6]</td>
<td>0.003</td>
</tr>
<tr>
<td>Curvature condyle $C_{\tau A_{\text{max}}} [\text{mm}^{-1}]$</td>
<td>0.8 [0.7; 1.0]</td>
<td>0.9 [0.7; 1.0]</td>
<td>0.891</td>
</tr>
<tr>
<td>Slope fossa $S_{\sigma_{\text{avg}}} [^\circ]$</td>
<td>26.8 [14.8;35.0]</td>
<td>28.8 [20.9;32.0]</td>
<td>0.848</td>
</tr>
<tr>
<td>Anterior distance fossa-condyle (m) $d_{\sigma_{ACFM}} [\text{mm}]$</td>
<td>3.1 [2.6; 4.4]</td>
<td>3.4 [3.2; 4.4]</td>
<td>0.239</td>
</tr>
<tr>
<td>Anterior distance fossa-condyle (c) $d_{\sigma_{ACFC}} [\text{mm}]$</td>
<td>3.2 [2.3; 4.2]</td>
<td>3.5 [2.7; 4.6]</td>
<td>0.412</td>
</tr>
<tr>
<td>Anterior distance fossa-condyle (l) $d_{\sigma_{ACFL}} [\text{mm}]$</td>
<td>3.5 [2.5; 4.2]</td>
<td>2.3 [2.1; 2.3]</td>
<td>0.004</td>
</tr>
<tr>
<td>Anterior curvature condyle $C_{\sigma_{A_{\text{max}}}} [\text{mm}^{-1}]$</td>
<td>0.4 [0.38;0.49]</td>
<td>0.37 [0.27;0.38]</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table 3. Classification of stress-field paths according to TMJ morphology parameters ($G_{K CF_{17}}, d_{\sigma_{ACF_{\text{min}}}}, C_{\sigma_{P_{\text{max}}}}$). 92.00% of cases correctly classified:

<table>
<thead>
<tr>
<th>Geometric classification</th>
<th>ML $n=14$</th>
<th>LM $n=11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted by discriminant analysis</td>
<td>ML</td>
<td>12 (85.7%)</td>
</tr>
<tr>
<td></td>
<td>LM</td>
<td>2 (14.3%)</td>
</tr>
</tbody>
</table>
Figure 1. Example of the two types of TMJ stress-field paths. The red trace represents the stress-field path during jaw opening/closing and the blue cone represents the actual position of the stress-field centroid with the mandible in intercuspal position. Stress-field path running mediolaterally (ML group, image a) and stress-field path running lateromedially (LM group, image b) at jaw opening (ICP: position at maximum intercuspation; MOP: maximum opening position; CLP: lateral pole of the condyle; CMP: medial pole of the condyle).

Figure 2. Reference planes for the morphological analysis. Coronal plane κ, transversal plane τ and sagittal plane σ. For the definition of the planes see text.

Figure 3. Quantitative parameters describing TMJ anatomy in the coronal plane. (a): Intracondylar distance $d_{\kappa ML}$ between the condylar poles CMP and CLP. (b): Curvature values $C_{\kappa Ci}$ along the cranial part of the condyle contour between the condylar poles; the curvature values $C_{\kappa Fi}$ along the fossa contour are determined in a similar way. (c): Incongruence values $G_{\kappa CFi}$ between condyle and fossa. For a detailed definition of the parameters see text.

Figure 4. Quantitative parameters describing TMJ anatomy in the transversal plane. Curvature values $C_{\tau Ai}$ of the anterior (a) and $C_{\tau Pi}$ of the posterior condylar arch (b). For a detailed definition of the parameters see text.

Figure 5. Quantitative parameters describing TMJ anatomy on each sagittal section. (a): Slope of the fossa $S_{\sigma i}$; i.e. the angle of the tangent to the steepest point (FSP) of the fossa contour between its most cranial (FCP_{max}) and its most caudal point (FCP_{min}). (b): Anterior distance $d_{\sigma ACF}$ between condyle and fossa, calculated between the points CAP and FAP. (c): Anterior curvature $C_{\sigma Ai}$ of the condyle. (d): Posterior curvature $C_{\sigma Pi}$ of the condyle. For a detailed definition of the parameters see text.

Figure 6. Graphical representation of the parameters describing TMJ anatomy. Box plot of the distance between the condylar poles $d_{\kappa ML}$ for the ML and LM group (a). Incongruence values $G_{\kappa CFi}$ between condyle and fossa in the coronal plane at maximum intercuspation for the ML and LM group (b); the horizontal bracket indicates the four most lateral points of the superior condylar arch closer to the fossa in the LM than in the ML group. Box plot of the distance $d_{\sigma ACF}$ between the condyle and the posterior slope of the eminence (c); the horizontal bracket indicates the three most lateral sections of the superior condylar contour closer to the fossa in the LM than in the ML group. Distribution of the classification function of the multivariate discriminant analysis for the ML and LM groups (d);
the two cases of the ML group incorrectly assigned to the LM group are below the red horizontal line.

Figure 7. Example of a TMJ of the LM type (subject #16, left TMJ #25). In the top view a thick black line represents the main condylar axis and the blue arrow heads show the thickness of the medial and lateral part of the condyle. Note how the lateral part of the condyle is thicker and closer to the fossa.

Figure 8. Models of TMJs simulated according to the morphometric parameters that most characterize the two types of stress-field paths. The joint of the ML type was constructed with a rounded condyle and a symmetric fossa. The joint of the LM type was constructed with a more cylindrical condyle and the fossa closer to it laterally. Both joints were moved with the identical kinematics: The motion occurred only in the sagittal plane and the main condylar axes were angulated at 15° relative to the transversal direction.
Figure 1
Figure 2
Figure 3

Figure 4
Figure 6
Figure 7

Figure 8