Header

UZH-Logo

Maintenance Infos

The membrane anchor of microsomal epoxide hydrolase from human, rat, and rabbit displays an unexpected membrane topology


Holler, Romy; Arand, Michael; Mecky, Astrid; Oesch, Franz; Friedberg, Thomas (1997). The membrane anchor of microsomal epoxide hydrolase from human, rat, and rabbit displays an unexpected membrane topology. Biochemical and Biophysical Research Communications, 236(3):754-759.

Abstract

The microsomal epoxide hydrolase (mEH) and cytochrome P450s catalyze the sequential formation of carcinogenic metabolites. According to one algorithm for predicting the membrane topology of proteins, the human, the rabbit, and the rat mEH should adopt a type II topology. The type II topology is also predicted by a recently established neuronal network which is trained to recognize signal peptides with very high accuracy. In contrast to these predictions we find, based on N-glycosylation analysis in a cell-free and in a cellular system, that the membrane anchor of human, rat, and rabbit mEH displays a type I topology. This result is correctly predicted by the positive inside rule in which negatively charged residues, the distribution of which differs in the mEH membrane anchor of these species, have only a modulating role for the membrane topology of proteins. However, our results demonstrate that this role is not strong enough to force the mEHs into a type II topology, not even in the case of the rabbit mEH, in which the only positively charged residue in the C-terminal part of the topogenic sequence is flanked by five negatively charged residues.

Abstract

The microsomal epoxide hydrolase (mEH) and cytochrome P450s catalyze the sequential formation of carcinogenic metabolites. According to one algorithm for predicting the membrane topology of proteins, the human, the rabbit, and the rat mEH should adopt a type II topology. The type II topology is also predicted by a recently established neuronal network which is trained to recognize signal peptides with very high accuracy. In contrast to these predictions we find, based on N-glycosylation analysis in a cell-free and in a cellular system, that the membrane anchor of human, rat, and rabbit mEH displays a type I topology. This result is correctly predicted by the positive inside rule in which negatively charged residues, the distribution of which differs in the mEH membrane anchor of these species, have only a modulating role for the membrane topology of proteins. However, our results demonstrate that this role is not strong enough to force the mEHs into a type II topology, not even in the case of the rabbit mEH, in which the only positively charged residue in the C-terminal part of the topogenic sequence is flanked by five negatively charged residues.

Statistics

Citations

10 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 23 Oct 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:30 July 1997
Deposited On:23 Oct 2015 12:05
Last Modified:05 Apr 2016 19:29
Publisher:Elsevier
ISSN:0006-291X
Publisher DOI:https://doi.org/10.1006/bbrc.1997.7044
PubMed ID:9245728

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 162kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations