Header

UZH-Logo

Maintenance Infos

A neural mechanism of strategic social choice under sanction-induced norm compliance


Makwana, A; Gron, G; Fehr, E; Hare, T A (2015). A neural mechanism of strategic social choice under sanction-induced norm compliance. eNeuro, 2(3):online.

Abstract

In recent years, much has been learned about the representation of subjective value in simple, nonstrategic choices. However, a large fraction of our daily decisions are embedded in social interactions in which value guided decisions require balancing benefits for self against consequences imposed by others in response to our choices. Yet, despite their ubiquity, much less is known about how value computation takes place in strategic social contexts that include the possibility of retribution for norm violations. Here, we used functional magnetic resonance imaging (fMRI) to show that when human subjects face such a context connectivity increases between the temporoparietal junction (TPJ), implicated in the representation of other peoples’ thoughts and intentions, and regions of ventromedial prefrontal cortex (vmPFC) that are associated with value computation. In contrast, we find no increase in connectivity between these regions in social nonstrategic cases where decision-makers are immune from retributive monetary punishments from a human partner. Moreover, there was also no increase in TPJ-vmPFC connectivity when the potential punishment was performed by a computer programmed to punish fairness norm violations in the same manner as a human would. Thus, TPJ-vmPFC connectivity is not simply a function of the social or norm enforcing nature of the decision, but rather occurs specifically in situations where subjects make decisions in a social context and strategically consider putative consequences imposed by others.

Abstract

In recent years, much has been learned about the representation of subjective value in simple, nonstrategic choices. However, a large fraction of our daily decisions are embedded in social interactions in which value guided decisions require balancing benefits for self against consequences imposed by others in response to our choices. Yet, despite their ubiquity, much less is known about how value computation takes place in strategic social contexts that include the possibility of retribution for norm violations. Here, we used functional magnetic resonance imaging (fMRI) to show that when human subjects face such a context connectivity increases between the temporoparietal junction (TPJ), implicated in the representation of other peoples’ thoughts and intentions, and regions of ventromedial prefrontal cortex (vmPFC) that are associated with value computation. In contrast, we find no increase in connectivity between these regions in social nonstrategic cases where decision-makers are immune from retributive monetary punishments from a human partner. Moreover, there was also no increase in TPJ-vmPFC connectivity when the potential punishment was performed by a computer programmed to punish fairness norm violations in the same manner as a human would. Thus, TPJ-vmPFC connectivity is not simply a function of the social or norm enforcing nature of the decision, but rather occurs specifically in situations where subjects make decisions in a social context and strategically consider putative consequences imposed by others.

Statistics

Citations

Altmetrics

Downloads

17 downloads since deposited on 04 Nov 2015
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
Dewey Decimal Classification:330 Economics
Language:English
Date:2015
Deposited On:04 Nov 2015 16:49
Last Modified:08 Dec 2017 14:34
Publisher:Society for Neuroscience
ISSN:2373-2822
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1523/ENEURO.0066-14.2015

Download

Download PDF  'A neural mechanism of strategic social choice under sanction-induced norm compliance'.
Preview
Content: Published Version
Filetype: PDF
Size: 634kB
View at publisher