Header

UZH-Logo

Maintenance Infos

Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma


Jäger, E; Ringhoffer, M; Altmannsberger, M; Arand, M; Karbach, J; Jäger, D; Oesch, F; Knuth, A (1997). Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. International Journal of Cancer, 71(2):142-147.

Abstract

Peptides derived from melanocyte differentiation antigens have been identified as targets for MHC class I-restricted cytolytic T lymphocytes (CTLs) in human melanoma Regression of antigen-expressing tumors as well as selection of antigen-loss variants in the presence of antigen-specific CTLs have previously been reported. In the present study, we determined the expression of the melanocyte differentiation antigens Melan A/MART-1 and tyrosinase by mRNA analysis and by immunohistochemical staining with the monoclonal antibodies (MAbs) A103 and T311. Co-expression of Melan A/MART-1 and tyrosinase was detected by both methods in 18/20 melanomas tested. However, immunohistochemistry provided additional information on intensity and microheterogeneity of antigen expression that cannot be detected by mRNA analysis as a molecular basis for the escape from CTL recognition of antigen-negative tumor cells. Comparative analysis of repeated biopsies of metastatic lesions in 5 HLA-A2+ patients showed a gradual loss of Melan A/MART-1 expression in 4/5 and of tyrosinase in 2/5 samples in association with tumor progression. However, 3 of these patients had growing antigen-positive tumors in the presence of antigen-specific CTLs. This led us to assess the expression of MHC class I, the essential restriction element for CTL recognition, and of HLA-A2. We found an unexpectedly high frequency of MHC class I-negative tumors (9/20). Loss of MHC class I expression was detected in 3/5 progressive tumors and isolated loss of HLA-A2 in 1/5 tumors. Our results suggest that strategies enhancing the expression of MHC class I and tumor-associated antigens need to be considered in attempts at making vaccination more effective.

Abstract

Peptides derived from melanocyte differentiation antigens have been identified as targets for MHC class I-restricted cytolytic T lymphocytes (CTLs) in human melanoma Regression of antigen-expressing tumors as well as selection of antigen-loss variants in the presence of antigen-specific CTLs have previously been reported. In the present study, we determined the expression of the melanocyte differentiation antigens Melan A/MART-1 and tyrosinase by mRNA analysis and by immunohistochemical staining with the monoclonal antibodies (MAbs) A103 and T311. Co-expression of Melan A/MART-1 and tyrosinase was detected by both methods in 18/20 melanomas tested. However, immunohistochemistry provided additional information on intensity and microheterogeneity of antigen expression that cannot be detected by mRNA analysis as a molecular basis for the escape from CTL recognition of antigen-negative tumor cells. Comparative analysis of repeated biopsies of metastatic lesions in 5 HLA-A2+ patients showed a gradual loss of Melan A/MART-1 expression in 4/5 and of tyrosinase in 2/5 samples in association with tumor progression. However, 3 of these patients had growing antigen-positive tumors in the presence of antigen-specific CTLs. This led us to assess the expression of MHC class I, the essential restriction element for CTL recognition, and of HLA-A2. We found an unexpectedly high frequency of MHC class I-negative tumors (9/20). Loss of MHC class I expression was detected in 3/5 progressive tumors and isolated loss of HLA-A2 in 1/5 tumors. Our results suggest that strategies enhancing the expression of MHC class I and tumor-associated antigens need to be considered in attempts at making vaccination more effective.

Statistics

Citations

252 citations in Web of Science®
266 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 29 Oct 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:10 April 1997
Deposited On:29 Oct 2015 13:27
Last Modified:08 Dec 2017 14:35
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0020-7136
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/(SICI)1097-0215(19970410)71:2<142::AID-IJC3>3.0.CO;2-0
PubMed ID:9139833

Download