Header

UZH-Logo

Maintenance Infos

An impaired peroxisomal targeting sequence leading to an unusual bicompartmental distribution of cytosolic epoxide hydrolase


Arand, M; Knehr, M; Thomas, H; Zeller, H D; Oesch, F (1991). An impaired peroxisomal targeting sequence leading to an unusual bicompartmental distribution of cytosolic epoxide hydrolase. FEBS letters, 294(1-2):19-22.

Abstract

To gain an understanding of the mechanism by which the subcellular distribution of cytosolic epoxide hydrolase (cEH) is directed, we have analyzed the carboxy terminal region of rat liver cEH by means of cDNA cloning to define the structure of its possible peroxisomal targeting sequence (PTS). Purified cEH was subjected to peptide analysis following endoproteinase Glu-C digestion and HPLC-separation of the fragments. The obtained sequence information was used to perform PCR experiments resulting in the isolation of a 680 bp cDNA clone encoding the carboxy terminus of cEH. The deduced amino acid sequence displays a terminal tripeptide Ser-Lys-Ile which is highly homologous to the PTS (Ser-Lys-Leu) found in other peroxisomal enzymes. This slight difference appears to be sufficient to convert the signal sequence into an impaired and therefore ambivalent PTS, directing the enzyme partly to the peroxisomes and allowing part to reside in the cytosol.

Abstract

To gain an understanding of the mechanism by which the subcellular distribution of cytosolic epoxide hydrolase (cEH) is directed, we have analyzed the carboxy terminal region of rat liver cEH by means of cDNA cloning to define the structure of its possible peroxisomal targeting sequence (PTS). Purified cEH was subjected to peptide analysis following endoproteinase Glu-C digestion and HPLC-separation of the fragments. The obtained sequence information was used to perform PCR experiments resulting in the isolation of a 680 bp cDNA clone encoding the carboxy terminus of cEH. The deduced amino acid sequence displays a terminal tripeptide Ser-Lys-Ile which is highly homologous to the PTS (Ser-Lys-Leu) found in other peroxisomal enzymes. This slight difference appears to be sufficient to convert the signal sequence into an impaired and therefore ambivalent PTS, directing the enzyme partly to the peroxisomes and allowing part to reside in the cytosol.

Statistics

Citations

41 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 29 Oct 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2 December 1991
Deposited On:29 Oct 2015 11:33
Last Modified:08 Dec 2017 14:38
Publisher:Elsevier
ISSN:0014-5793
Publisher DOI:https://doi.org/10.1016/0014-5793(91)81333-4
PubMed ID:1743286

Download