Header

UZH-Logo

Maintenance Infos

Proton disorder in cubic ice: effect on the electronic and optical properties


Garbuio, Viviana; Cascella, Michele; Kupchak, Igor; Pulci, Olivia; Seitsonen, Ari Paavo (2015). Proton disorder in cubic ice: effect on the electronic and optical properties. Journal of Chemical Physics, 143(8):084507.

Abstract

The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation.

Abstract

The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation.

Statistics

Altmetrics

Downloads

34 downloads since deposited on 21 Dec 2015
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2015
Deposited On:21 Dec 2015 15:13
Last Modified:08 Dec 2017 14:45
Publisher:American Institute of Physics
ISSN:0021-9606
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1063/1.4929468
PubMed ID:26328856

Download

Download PDF  'Proton disorder in cubic ice: effect on the electronic and optical properties'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher