Header

UZH-Logo

Maintenance Infos

Test-retest reliability of dynamic causal modeling for fMRI


Frässle, Stefan; Stephan, Klaas Enno; Friston, Karl John; Steup, Marlena; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas (2015). Test-retest reliability of dynamic causal modeling for fMRI. NeuroImage, 117:56-66.

Abstract

Dynamic causal modeling (DCM) is a Bayesian framework for inferring effective connectivity among brain regions from neuroimaging data. While the validity of DCM has been investigated in various previous studies, the reliability of DCM parameter estimates across sessions has been examined less systematically. Here, we report results of a software comparison with regard to test-retest reliability of DCM for fMRI, using a challenging scenario where complex models with many parameters were applied to relatively few data points. Specifically, we examined the reliability of different DCM implementations (in terms of the intra-class correlation coefficient, ICC) based on fMRI data from 35 human subjects performing a simple motor task in two separate sessions, one month apart. We constructed DCMs of motor regions with fair to excellent reliability of conventional activation measures. Using classical DCM (cDCM) in SPM5, we found that the test-retest reliability of DCM results was high, both concerning the model evidence (ICC=0.94) and the model parameter estimates (median ICC=0.47). However, when using a more recent DCM version (DCM10 in SPM8), test-retest reliability was reduced notably. Analyses indicated that, in our particular case, the prior distributions played a crucial role in this change in reliability across software versions. Specifically, when using cDCM priors for model inversion in DCM10, this not only restored reliability but yielded even better results than in cDCM. Analyzing each component of the objective function in DCM, we found a selective change in the reliability of posterior mean estimates. This suggests that tighter regularization afforded by cDCM priors reduces the possibility of local extrema in the objective function. We conclude this paper with an outlook to ongoing developments for overcoming the software-dependency of reliability observed in this study, including global optimization and empirical Bayesian procedures.

Abstract

Dynamic causal modeling (DCM) is a Bayesian framework for inferring effective connectivity among brain regions from neuroimaging data. While the validity of DCM has been investigated in various previous studies, the reliability of DCM parameter estimates across sessions has been examined less systematically. Here, we report results of a software comparison with regard to test-retest reliability of DCM for fMRI, using a challenging scenario where complex models with many parameters were applied to relatively few data points. Specifically, we examined the reliability of different DCM implementations (in terms of the intra-class correlation coefficient, ICC) based on fMRI data from 35 human subjects performing a simple motor task in two separate sessions, one month apart. We constructed DCMs of motor regions with fair to excellent reliability of conventional activation measures. Using classical DCM (cDCM) in SPM5, we found that the test-retest reliability of DCM results was high, both concerning the model evidence (ICC=0.94) and the model parameter estimates (median ICC=0.47). However, when using a more recent DCM version (DCM10 in SPM8), test-retest reliability was reduced notably. Analyses indicated that, in our particular case, the prior distributions played a crucial role in this change in reliability across software versions. Specifically, when using cDCM priors for model inversion in DCM10, this not only restored reliability but yielded even better results than in cDCM. Analyzing each component of the objective function in DCM, we found a selective change in the reliability of posterior mean estimates. This suggests that tighter regularization afforded by cDCM priors reduces the possibility of local extrema in the objective function. We conclude this paper with an outlook to ongoing developments for overcoming the software-dependency of reliability observed in this study, including global optimization and empirical Bayesian procedures.

Statistics

Citations

12 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 19 Nov 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Uncontrolled Keywords:Conditional dependencies; DCM; Empirical Bayes; Hyperpriors; Motor; Priors; Test-retest reliability; fMRI
Language:English
Date:2015
Deposited On:19 Nov 2015 08:58
Last Modified:05 Apr 2016 19:31
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2015.05.040
PubMed ID:26004501

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations