Header

UZH-Logo

Maintenance Infos

Amyotrophic lateral sclerosis affects cortical and subcortical activity underlying motor inhibition and action monitoring


Mohammadi, Bahram; Kollewe, Katja; Cole, David M; Fellbrich, Anja; Heldmann, Marcus; Samii, Amir; Dengler, Reinhard; Petri, Susanne; Münte, Thomas F; Krämer, Ulrike M (2015). Amyotrophic lateral sclerosis affects cortical and subcortical activity underlying motor inhibition and action monitoring. Human Brain Mapping, 36(8):2878-2889.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by muscular atrophy, spasticity, and bulbar signs caused by loss of upper and lower motor neurons. Evidence suggests that ALS additionally affects other brain areas including premotor cortex and supplementary motor area. Here, we studied movement execution and inhibition in ALS patients using a stop-signal paradigm and functional magnetic resonance imaging. Seventeen ALS patients and 17 age-matched healthy controls performed a stop-signal task that required responding with a button press to a right- or left-pointing black arrow (go-stimuli). In stop-trials, a red arrow (stop-stimulus) was presented shortly after the black arrow indicating to withhold the prepared movement. Patients had by trend higher reaction times in go-trials but did not differ significantly in their inhibition performance. Patients showed stronger inhibition-related activity in inferior, superior, and middle frontal gyri as well as in putamen and pallidum. Error-related activity, conversely, was found to be stronger in healthy controls, particularly in the insula bilaterally. Patients also showed increased activity in the motor cortex during button presses. The results provide evidence for altered prefrontal and subcortical networks underlying motor execution, motor inhibition, and error monitoring in ALS.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by muscular atrophy, spasticity, and bulbar signs caused by loss of upper and lower motor neurons. Evidence suggests that ALS additionally affects other brain areas including premotor cortex and supplementary motor area. Here, we studied movement execution and inhibition in ALS patients using a stop-signal paradigm and functional magnetic resonance imaging. Seventeen ALS patients and 17 age-matched healthy controls performed a stop-signal task that required responding with a button press to a right- or left-pointing black arrow (go-stimuli). In stop-trials, a red arrow (stop-stimulus) was presented shortly after the black arrow indicating to withhold the prepared movement. Patients had by trend higher reaction times in go-trials but did not differ significantly in their inhibition performance. Patients showed stronger inhibition-related activity in inferior, superior, and middle frontal gyri as well as in putamen and pallidum. Error-related activity, conversely, was found to be stronger in healthy controls, particularly in the insula bilaterally. Patients also showed increased activity in the motor cortex during button presses. The results provide evidence for altered prefrontal and subcortical networks underlying motor execution, motor inhibition, and error monitoring in ALS.

Statistics

Citations

6 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 17 Nov 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:17 Nov 2015 13:52
Last Modified:08 Dec 2017 14:50
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1065-9471
Publisher DOI:https://doi.org/10.1002/hbm.22814
PubMed ID:25913637

Download