Prevalence of and potential influencing factors for alcohol dependence in Europe

Rehm, Jürgen; Anderson, Peter; Barry, Joe; Dimitrov, Plamen; Elekes, Zsuzsanna; Feijão, Fernanda; Frick, Ulrich; Gual, Antoni; Gmel, Gerrit; Kraus, Ludwig; Marmet, Simon; Raninen, Jonas; Rehm, Maximilien X; Scafato, Emanuele; Shield, Kevin D; Trapencieris, Marcis; Gmel, Gerhard

Abstract: Alcohol use disorders (AUDs), and alcohol dependence (AD) in particular, are prevalent and associated with a large burden of disability and mortality. The aim of this study was to estimate prevalence of AD in the European Union (EU), Iceland, Norway, and Switzerland for the year 2010, and to investigate potential influencing factors. The 1-year prevalence of AD in the EU was estimated at 3.4% among people 18-64 years of age in Europe (women 1.7%, men 5.2%), resulting in close to 11 million affected people. Taking into account all people of all ages, AD, abuse and harmful use resulted in an estimate of 23 million affected people. Prevalence of AD varied widely between European countries, and was significantly impacted by drinking cultures and social norms. Correlations with level of drinking and other drinking variables and with major known outcomes of heavy drinking, such as liver cirrhosis or injury, were moderate. These results suggest a need to rethink the definition of AUDs.

DOI: https://doi.org/10.1159/000365284

Posted at the Zurich Open Repository and Archive, University of Zurich

ZORA URL: https://doi.org/10.5167/uzh-114497

Published Version

Originally published at:
Rehm, Jürgen; Anderson, Peter; Barry, Joe; Dimitrov, Plamen; Elekes, Zsuzsanna; Feijão, Fernanda; Frick, Ulrich; Gual, Antoni; Gmel, Gerrit; Kraus, Ludwig; Marmet, Simon; Raninen, Jonas; Rehm, Maximilien X; Scafato, Emanuele; Shield, Kevin D; Trapencieris, Marcis; Gmel, Gerhard (2015). Prevalence of and potential influencing factors for alcohol dependence in Europe. European Addiction Research, 21(1):6-18.

DOI: https://doi.org/10.1159/000365284
Prevalence of and Potential Influencing Factors for Alcohol Dependence in Europe

Jürgen Rehm a–f Peter Anderson g, h Joe Barry i Plamen Dimitrov j Zsuzsanna Elekes k Fernanda Feijão l Ulrich Frick m Antoni Gual n Gerrit Gmel, Jr. a, o, p Ludwig Kraus q, r Simon Marmet s Jonas Raninen t–v Maximilien X. Rehm w Emanuele Scafato x Kevin D. Shield a, d, f Marcis Trapenciers y Gerhard Gmel s, z, aa

a Social and Epidemiological Research (SER) Department, Centre for Addiction and Mental Health, b Addiction Policy, Dalla Lana School of Public Health, University of Toronto, c Department of Psychiatry, Faculty of Medicine, University of Toronto, and d PAHO/WHO Collaborating Centre for Mental Health and Addiction, Toronto, Ont., Canada; e Epidemiological Research Unit, Klinische Psychologie und Psychotherapie, Technische Universität Dresden, Dresden, Germany; f Institute of Medical Science, University of Toronto, Toronto, Ont., Canada; g Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK; h Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; i Trinity College, Dublin, Ireland; j National Center of Public Health and Analyses, Sofia, Bulgaria; k Corvinus University of Budapest, Budapest, Hungary; l General-Directorate for Intervention on Addictive Behaviours and Dependencies (SICAD), Lisbon, Portugal; m HSD University of Applied Sciences, Cologne, Germany; n Addictions Unit, Psychiatry Department, Neurosciences Institute, Hospital Clinic, IDIBAPS, Barcelona, Spain; o School of Electrical Engineering and Telecommunications, The University of New South Wales, Kensington, N.S.W., and p National Information and Communications Technology Australia, Eveleigh, N.S.W., Australia; q IFT Institut für Therapieforschung, Munich, Germany; r Centre for Social Research on Alcohol and Drugs, Stockholm University (SORAD), Stockholm, Sweden; s Addiction Switzerland, Lausanne, Switzerland; t STAD-project (Stockholm Prevents Alcohol and Drug Problems), u Swedish Council for Information on Alcohol and Other Drugs (CAN), and v Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; w Graduate School of International Relations, Ritsumeikan University, Kyoto, Japan; x National Observatory on Alcohol, Population’s Health and Health Determinants Units, National Centre for Epidemiology, Surveillance and Health Promotion – CNESPS, Istituto Superiore di Sanità, Rome, Italy; y Institute of Philosophy and Sociology, University of Latvia, Riga, Latvia; z University of the West of England, Bristol, UK; aa Alcohol Treatment Center, Lausanne, University Hospital, Lausanne, Switzerland

Iceland, Norway, and Switzerland for the year 2010, and to investigate potential influencing factors. The 1-year prevalence of AD in the EU was estimated at 3.4% among people 18–64 years of age in Europe (women 1.7%, men 5.2%), resulting in close to 11 million affected people. Taking into account all people of all ages, AD, abuse and harmful use resulted in an estimate of 23 million affected people. Prevalence of AD varied widely between European countries, and was significantly impacted by drinking cultures and social norms. Correlations with level of drinking and other drinking

Key Words
Alcohol · Alcohol dependence · Alcohol use disorders · Heavy drinking · Prevalence · Liver cirrhosis · Injury · Europe

Abstract
Alcohol use disorders (AUDs), and alcohol dependence (AD) in particular, are prevalent and associated with a large burden of disability and mortality. The aim of this study was to estimate prevalence of AD in the European Union (EU),
variables and with major known outcomes of heavy drinking, such as liver cirrhosis or injury, were moderate. These results suggest a need to rethink the definition of AUDs.

© 2014 S. Karger AG, Basel

Introduction

Alcohol consumption is a major risk factor for the burden of disease [1–3]. Alcohol use disorders (AUDs), as defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM) version IV [4] or the 10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10) [5], are associated with the most detrimental health consequences caused by alcohol consumption [6–9]. For instance, for the European Union (EU) in 2004, alcohol dependence (AD), the most severe form of AUDs, was estimated to be responsible for more than 60% of all alcohol-attributable mortality, causing 85,000 deaths (12,000 deaths among women and 73,000 deaths among men) [10, 11].

Estimates of the burden caused by AUDs are usually based on attributable fractions and require information on the prevalence of AUDs and the relative risk for outcomes causally related to AUDs ([12]; for disease-specific relative risks associated with AUDs, see [13]). Thus, reliable and valid data on the prevalence of AD and alcohol abuse (DSM-IV) or the harmful use of alcohol (ICD-10) would be required to measure and monitor the prevalence of AUDs and their consequences (no European studies were available up to 2013 using DSM-5). As the last systematic epidemiologic review of AUDs in Europe was published in 2005 [14], it is the aim of this study to present an overview of current knowledge on the prevalence of AD and AUDs in the EU-27 and the other European ALICE-RAP participating countries (Iceland, Norway and Switzerland). We will examine the availability, validity, and reliability of the currently available data. We will also analyze potential covariates and influencing factors.

Large comparative international studies by the World Health Organization (WHO) on the validity and reliability of diagnostic categories in ten countries showed that the diagnostic concordance coefficients between the usual instruments used to measure AUDs and psychiatric judgments were good to very good for dependence, but considerably lower for the abuse and harmful use [15, 16]. This finding has been corroborated by other studies [17]. Thus, this study focuses on AD as the most severe [18, 19] and valid sub-diagnosis of AUDs.

Methods

Selection of Studies for Prevalence Data and the Derivation of Prevalence Estimates

Prevalence estimates for AD were based on an earlier systematic literature review for each country examined ([10], updated to September 2013 based on the latest WHO Global Status Report on Alcohol and Health [20]), to obtain best estimates for 2010. The data obtained from the systematic review were then adjusted for biases and checked for validity and comprehensiveness by the Addiction and Lifestyles in Contemporary Europe-Reframing Addictions Project (ALICE-RAP) experts in all participating countries.

The following selection criteria for prevalence estimates of AD were used: the highest priority was given to prevalence estimates obtained from nationally representative surveys of the general population that used a standardized and validated instrument to measure AD, such as the Composite International Diagnostic Interview (CIDI [21]) or the Schedules for Clinical Assessment in Neuropsychiatry (SCAN [22]) in its various forms (for reliability and validity of these instruments to assess AD, see [15, 16]). Within this category, we preferred studies where the prevalence of AD and alcohol abuse/harmful use was assessed independently.

The second highest priority was given to prevalence estimates for AD that were obtained from nationally representative surveys of the general population using a standardized and validated instrument where AD and alcohol abuse/harmful use were not assessed independently. Most importantly in this category, the early round of the World Mental Health Survey in European countries [23] assessed AD only if at least one criterion for alcohol abuse was fulfilled; as a consequence, the prevalence of AD was severely underestimated by the World Mental Health Surveys (WMHS) [24]. The WMHS were used in estimating AD for Belgium (part of the overall estimate; see table 1), Bulgaria (see also [25, 26], for details on the operationalization), the Czech Republic [27], France, Italy [28], Romania [29] and Spain [30]. For each of these countries the prevalence estimates had to be adjusted as these empirical estimates were severely underestimated; only people with a symptom of alcohol abuse were screened for AD. These prevalence estimates were adjusted by upshifting the empirical prevalence by the proportion of overall AD, where no symptoms of alcohol abuse were observed (based on data from the German National Health Interview and Examination Survey [31, 32]). For countries in Central or Eastern Europe, the Slovakian WHO Multi-Country Survey Study [33] was used for upshifting. While this procedure could be seen as correcting the underestimation of AD, it may have been too conservative a method for countries in the South of Europe where AD is relatively more prevalent than alcohol abuse because of these countries’ drinking patterns [10].

The third highest priority was given to national prevalence estimates of AD that were accompanied (either directly or indirectly) by a clear description of the methodology used (for an example, see Switzerland [34]). The lowest priority was given to prevalence estimates obtained from national or international organizations that were not accompanied (neither directly nor indirectly) by a clear indication of sources or of the methodology used (e.g. from the WHO or the EU, e.g. http://ec.europa.eu/health/alcohol/policy/country_profiles/ based on [35]; see table 1). If only the prevalence of AUDs was presented, these figures were adjusted as to only report the prevalence of AD based on the relative prevalence of AUD and AD observed for neighboring countries. Not
<table>
<thead>
<tr>
<th>Country</th>
<th>Prevalence of AD, %</th>
<th>Year</th>
<th>Number of people who were alcohol-dependent (2010)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>women</td>
<td>men</td>
<td>total</td>
<td>women</td>
</tr>
<tr>
<td>Austria</td>
<td>3.0</td>
<td>8.8</td>
<td>5.9</td>
<td>2004</td>
</tr>
<tr>
<td>Belgium1</td>
<td>2.3</td>
<td>6.3</td>
<td>4.3</td>
<td>2001/2002</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.4</td>
<td>4.3</td>
<td>2.3</td>
<td>2003–2007</td>
</tr>
<tr>
<td>Cyprus</td>
<td>1.6</td>
<td>5.3</td>
<td>3.5</td>
<td>2004</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.8</td>
<td>5.0</td>
<td>2.9</td>
<td>1989–1999</td>
</tr>
<tr>
<td>Denmark</td>
<td>2.2</td>
<td>5.6</td>
<td>3.9</td>
<td>2005</td>
</tr>
<tr>
<td>Estonia</td>
<td>1.4</td>
<td>13.0</td>
<td>7.0</td>
<td>1999</td>
</tr>
<tr>
<td>Finland</td>
<td>1.9</td>
<td>7.2</td>
<td>4.6</td>
<td>2000</td>
</tr>
<tr>
<td>France</td>
<td>1.5</td>
<td>5.3</td>
<td>3.4</td>
<td>2001–2002</td>
</tr>
<tr>
<td>Germany2</td>
<td>2.0</td>
<td>5.0</td>
<td>3.6</td>
<td>2009–2012</td>
</tr>
<tr>
<td>Greece</td>
<td>1.5</td>
<td>4.8</td>
<td>3.2</td>
<td>2004</td>
</tr>
<tr>
<td>Hungary</td>
<td>3.7</td>
<td>10.1</td>
<td>6.8</td>
<td>2010</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.7</td>
<td>10.5</td>
<td>5.7</td>
<td>2005–2007</td>
</tr>
<tr>
<td>Ireland</td>
<td>2.0</td>
<td>6.4</td>
<td>4.2</td>
<td>2004</td>
</tr>
<tr>
<td>Italy3</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2001–2003</td>
</tr>
<tr>
<td>Latvia</td>
<td>4.3</td>
<td>21.2</td>
<td>12.5</td>
<td>2011</td>
</tr>
<tr>
<td>Lithuania</td>
<td>1.9</td>
<td>9.9</td>
<td>5.8</td>
<td>2004</td>
</tr>
</tbody>
</table>
included in our systematic review were prevalence estimates of AD that were derived from screening scales such as the Alcohol Use Disorders Identification Test (AUDIT) [36] or the CAGE questionnaire [37]; however, these estimates are provided as footnotes to table 1, if no estimate form the highest priority was available, or used in other parts of the paper (for trends, if there were comparable surveys).

The red-shaded cells indicate more than 150%, the green-shaded cells less than 50% of the EU average (color only in online version). If both women and men have the same shading, the country name is also shaded. GSRA = Global Status Report on Alcohol 2004 [107]; MCSS = Multi-Country Survey Study [33]; WHS = World Health Survey [108]; WMHS = World Mental Health Survey [109].

1 Based on the CAGE with a criterion of at least two positive answers, 2.2% of women 65 years and older, and 7.1% of men in that age range were screened for AD [110]. 2 There are several regional studies in Germany (see overview for studies until 2005 [14]) as well as two traditions of national surveys: the German National Health Interview and Examination Survey [40] and German Epidemiological Survey of Substance Abuse [53]. The prior wave of the German National Health Interview and Examination Survey for Adults conducted 1997–1999 found similar data: 1.3% for women and 5.4% for men in the age group 18–64 [31, 32]. See text for a description of prevalence trends over time. 3 The Istituto Superiore di Sanita estimates the prevalence to be 2% overall [111]. No details about the methodology were given. See also [112] for a discussion of the prevalence of AD in Italy. Numbers of people afflicted were based on 0.45%. 4 The prevalence of abuse was found to be 5 times higher. AUDs as the sum of AD and abuse have been stable for the past decade [54], but AD estimates had been considerably higher in the preceding survey [58]. 5 The prevalence of AD in primary healthcare was found to be 19% using the CAGE screening scale [113]. 6 The national survey for 2012 found a prevalence of 0.3% for AD based on AUDIT thresholds in the age group 15–74 [114]. 7 The Part Study showed 3.3% for women and 7.7% for men [see 14, 115; see also 116]. 8 There are other estimates such as the one cited by the National Institute for Health and Clinical Excellence [117], which amounted to 6% of men and 2% of women. The prevalence for Northern Ireland was substantially lower in 1993/1994 (1.4% for both sexes [118]). There is another study on Northern Ireland as part of the WMHS (field work 2004–2008) which showed a prevalence rate of 4.2% when adjusted for independent assessment of abuse and dependence [119].

Age Standardization and Estimation of the Number of People Affected
Population estimates in 5-year intervals were obtained from the United Nations 2008 population revisions [38]. If prevalence data for AD were reported by sex and age, we used weighted averages of the various age groups to formulate population estimates. If only estimates of AD for wider age groups (such as for Austria

Table 1. (continued)

<table>
<thead>
<tr>
<th>Country</th>
<th>Prevalence of AD, %</th>
<th>Number of people who were alcohol-dependent (2010)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>women</td>
<td>men</td>
<td>total</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1.8</td>
<td>5.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Malta</td>
<td>0.8</td>
<td>2.8</td>
<td>1.8</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>0.5</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Norway</td>
<td>1.8</td>
<td>6.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Poland</td>
<td>1.6</td>
<td>8.4</td>
<td>5.0</td>
</tr>
<tr>
<td>Portugal</td>
<td>1.7</td>
<td>5.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Romania</td>
<td>0.7</td>
<td>2.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Slovakia</td>
<td>1.3</td>
<td>9.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Slovenia</td>
<td>2.0</td>
<td>10.5</td>
<td>6.3</td>
</tr>
<tr>
<td>Spain</td>
<td>0.2</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Sweden</td>
<td>3.8</td>
<td>6.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1.6</td>
<td>8.1</td>
<td>4.9</td>
</tr>
<tr>
<td>European Union</td>
<td>1.7</td>
<td>5.2</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Austria, we used the German survey of AD for people 18–64 years of age (for example, in the case of Austria, we used the German survey [40]).

Countries and Regions Examined
The prevalence of AD was examined for the 2010 members of the EU and for Iceland, Norway, and Switzerland. Regions used in this analysis were defined as follows: Central-West and Western Europe (Austria, Belgium, France, Germany, Ireland, Luxembourg, the Netherlands, Switzerland, and the United Kingdom); Central-East and Eastern Europe (Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, and Slovenia); Southern Europe (Cyprus, Greece, Italy, Malta, Portugal, and Spain), and Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden).

Modelling the Associations between Alcohol Dependence and Various Measures
The following factors were tested for association with gender-specific AD rates: gross domestic product per capita adjusted for purchasing power parity (GDP-PPP), adult per capita total consumption of alcohol, patterns of drinking scores, liver cirrhosis mortality, injury mortality, and alcohol-attributable mortality. GDP-PPP data for 2010 were obtained from the World Economic Outlook Database of the International Monetary Fund [41]. Adult per capita consumption of alcohol was composed of recorded, tourist, and unrecorded consumption. Data on per capita consumption were obtained from the WHO Regional Office for Health (for the databank and definitions, see http://www.euro.who.int/en/what-we-do/data-and-evidence/databases/european-health-for-all-database-hfa-db2, and [42]). Data were for 2010 and identical to data from the WHO in the Global Information System for Alcohol and Health (GISAH) (http://www.who.int/gho/alcohol/en/index.html). The proportion of unrecorded consumption in Europe to total per capita consumption was found to be lower than the global estimates (see [42]; for a general discussion of the term, see [43]). The pattern of drinking score is a population summary measure that indicates how alcohol is consumed. It is comprised of four indicators of heavy drinking occasions and intoxication, one measure of drinking in public places, and one measure of drinking with meals [44, 45]. Patterns of drinking scores were obtained from the GISAH. The prevalence of heavy drinking, defined as 60 g and more of ethanol/day for men or 40 g and more for women (for the thresholds in the definition, see [49]) was estimated using the methodology developed for the CRA [46–48] and was calculated using data on per capita consumption and lifetime abstention obtained from the GISAH. Alcohol-attributable mortality (using the categories of liver cirrhosis, cancer, and injury) were obtained from a WHO European region publication [50].

All associations were modeled using Pearson product-moment correlation coefficients using the statistical software package R (version 3.0.1) [51].

Results
Based on data from population studies, close to 11 million (10.98) adults 18–64 years of age were estimated to be alcohol-dependent in the EU in 2010, with approximately 3 times more men than women being alcohol-dependent (see table 1 for details). Adding AD estimates for Iceland, Norway, and Switzerland to the EU estimates, the total number of individuals who were alcohol-dependent increased to 11.36 million; however, the underlying prevalence of AD did not noticeably change. The main results of the review are summarized in table 1, showing a lack of quality data as defined by the highest priority.

The overall prevalence of alcohol abuse including all comparable ages was approximately equal to the prevalence of AD (lower prevalence of abuse: Germany [40], Norway Oslo [52]; about the same, ±0.3%: Germany [53]; higher prevalence of abuse: the Netherlands [54], Norway rural [52]; in Slovakia, in the WHO multi-country study [33], women had a higher prevalence of alcohol abuse and men had a higher prevalence of AD). These results included only studies that independently measured AD and alcohol abuse, so the WMHS results were excluded since dependence in those surveys was only assessed if there was at least one symptom of abuse. The observation of approximately equal prevalence of AD and alcohol abuse was corroborated by earlier European studies (listed in [14]).

In terms of age, the proportion of abuse among all AUDs is larger in young adults [14], which is consistent with the assertion that more severe AD can be observed in later age groups [55]. Overall, among people 18–64 years of age, we estimate that approximately 23 million people in our studied countries have an AUD, as defined by AD or abuse/harmful use.

Trends in the Prevalence of Alcohol Use Disorders over Time
Data on AD that are comparable over time were available for only a few countries, and often based on screening scales or other more indirect measures for AUDs. For Belgium, the National Health Interview Survey used the CAGE screener as a comparable indicator; according to the CAGE screener, the prevalence of AUDs increased among women (6.6, 7.8, and 10.2% for 2001, 2004, and 2008, respectively), and among men (9.2, 10.5, and 13.1% for 2001, 2004, and 2008, respectively) [56]. Additionally, between 2001 and 2008, an increase in the prevalence of AUDs defined by CAGE was observed for all age groups for both women and men (https://www.wiv-isp.be/ scripts92/broker.exe?_service = default&_program = phisia.alcohol08.sas).

In Germany, data on AUDs based on DSM-IV diagnostic criteria and a standardized methodology [57] have been available since 1997, allowing for comparisons over
time. Within the German Epidemiological Survey of Substance Abuse, AUD criteria were assessed using the Munich Composite International Diagnostic Interview (MCIDI). AD was measured in 1997, 2000, 2006, and 2012, and comparisons can be made for both sexes for people 18–59 years of age [53]. Twelve-month prevalence estimates revealed a significant increase in the prevalence of AD in men between 2006 (4.0%) and 2012 (5.2%), with a constant prevalence in the previous surveys before 2006. Similarly, a significant increase in the rate of AD in females can be observed between 2006 (1.5%) and 2012 (2.1%). Rates in 1995 and 2000 were 1.0 and 1.2%, respectively. For alcohol abuse, the data were relatively stable, with the prevalence of abuse being higher overall than the prevalence of AD [53, 57]. Thus, for the period of 1995–2012, the data suggest an increase in the number and rate of people with AD (and AUD) in the general population in Germany.

For the Netherlands, the prevalence of AUDs did not change between 1996 and 2009 [54] when the values from 1996 were statistically adjusted for differences in the diagnostic instrument and CIDI version used. However, AD seems to have decreased from 4.3 to 0.7% [54, 58]. This decrease may be explained by the use of the WMHS procedure of asking dependence questions only of those people who answer affirmatively to abuse questions; however, the description of the exact methodology used was unclear [54], and thus we did not adjust the 2009 prevalence. For Switzerland, only comparisons based on different versions of the AUDIT were available (versions differing in the operationalization of the consumption questions), and they seem to indicate stability of prevalence of people with an AUDIT score of 16 and more between 1997 and 2012 (all prevalence below 1% [59, 60]). Overall, for those countries with comparable assessments, the prevalence of AUDs seemed to remain stable or may be increasing. However, the lack of studies with comparable quality indicators was even more apparent for trends than for rates.

Associations between the Prevalence of Alcohol Dependence and Hypothesized Correlates

Corroborating the results of the last review [14], patterns of drinking scores had the highest level of association with the prevalence of AD among men; however, this association was not significant for women. In contrast, the measures of per capita total and unrecorded consumption of alcohol and the prevalence of heavy alcohol consumption were found to be not significantly associated with the prevalence of AD for either men or women. A significant association was found between the prevalence of AD and injury mortality for women (a non-significant association was observed for men); however, the associations between liver cirrhosis mortality and all alcohol-attributable deaths (liver cirrhosis, cancer and injury) and AD were not significant for either women or men. Additionally, the economic wealth of a country in Europe (measured as GDP-PPP) had no association with the prevalence of AD for either men or women. Table 2 outlines the associations between the prevalence of AD and the hypothesized correlates for women, men, and the total population.

<table>
<thead>
<tr>
<th>Gross domestic product (purchasing power parity)</th>
<th>Women</th>
<th></th>
<th></th>
<th>Men</th>
<th></th>
<th></th>
<th>Total</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r₁</td>
<td>0.07</td>
<td>–0.30–0.42</td>
<td>0.710</td>
<td>–0.22</td>
<td>–0.54–0.15</td>
<td>0.245</td>
<td>–0.16</td>
<td>–0.49–0.21</td>
<td>0.404</td>
</tr>
<tr>
<td>95% CI</td>
<td>p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per capita consumption</td>
<td>0.17</td>
<td>–0.21–0.50</td>
<td>0.383</td>
<td>0.25</td>
<td>–0.12–0.56</td>
<td>0.179</td>
<td>0.24</td>
<td>–0.13–0.56</td>
<td>0.192</td>
</tr>
<tr>
<td>Unrecorded consumption²</td>
<td>–0.02</td>
<td>–0.38–0.34</td>
<td>0.922</td>
<td>–0.06</td>
<td>–0.41–0.31</td>
<td>0.772</td>
<td>–0.06</td>
<td>–0.41–0.31</td>
<td>0.763</td>
</tr>
<tr>
<td>Patterns of drinking score³</td>
<td>0.27</td>
<td>–0.10–0.58</td>
<td>0.145</td>
<td>0.63</td>
<td>0.35–0.81</td>
<td>0.000</td>
<td>0.59</td>
<td>0.29–0.78</td>
<td>0.001</td>
</tr>
<tr>
<td>Prevalence of heavy alcohol consumption⁴</td>
<td>0.24</td>
<td>–0.13–0.55</td>
<td>0.199</td>
<td>0.18</td>
<td>–0.19–0.51</td>
<td>0.333</td>
<td>0.23</td>
<td>–0.14–0.55</td>
<td>0.219</td>
</tr>
<tr>
<td>Liver cirrhosis mortality</td>
<td>0.08</td>
<td>–0.33–0.46</td>
<td>0.713</td>
<td>0.25</td>
<td>–0.16–0.59</td>
<td>0.234</td>
<td>0.21</td>
<td>–0.21–0.56</td>
<td>0.324</td>
</tr>
<tr>
<td>Injury mortality</td>
<td>0.62</td>
<td>0.30–0.82</td>
<td>0.001</td>
<td>0.39</td>
<td>0.01–0.68</td>
<td>0.054</td>
<td>0.45</td>
<td>0.07–0.72</td>
<td>0.024</td>
</tr>
<tr>
<td>Alcohol-attributable liver cirrhosis, cancer and injury deaths</td>
<td>0.21</td>
<td>–0.20–0.56</td>
<td>0.304</td>
<td>0.47</td>
<td>0.09–0.73</td>
<td>0.018</td>
<td>0.39</td>
<td>0.00–0.68</td>
<td>0.053</td>
</tr>
</tbody>
</table>

¹ Pearson product-moment correlation coefficients. ² Unrecorded consumption in liters adult per capita (see above and WHO [21]). ³ Pattern of drinking score (see Methods above and Rehm et al. [44, 120]). ⁴ On average a consumption of alcohol ≥60 g/day for men and 40 g/day for women.
in the EU, 3.5% of people 18–64 years of age were estimated to be alcohol-dependent, while 11.1% were estimated as heavy drinkers. The ratio of people who were alcohol-dependent as compared to the number of people who were heavy drinkers varied by sex and region. For men in the EU in 2010 the prevalence of heavy drinking was 2.7 times the prevalence of AD, while for women the prevalence of heavy drinking was 4.9 times the prevalence of AD. Within Europe, the South had the highest ratio, with the prevalence of heavy drinking being 8.1 times the prevalence of AD, while Nordic countries had the lowest ratio, with the prevalence of heavy drinking being 1.9 times the prevalence of AD.

Discussion

This study found that AD and AUDs are common in the EU. We estimated that in 2010 approximately 11 million adults in the EU were alcohol-dependent and that
more than 22 million adults in the EU qualified as having AUDs. The AUD estimates may become important when systems of care shift to treatments in accordance with the DSM-5 [61]. The prevalence of alcohol abuse was higher in young adults [14], which is consistent with the notion that more severe AD was found in the later age groups [9, 55].

The prevalence figures for AD presented in this paper may be underestimated as they are derived from general population surveys which do not include special and marginalized groups such as the homeless, people who are incarcerated, and people who are institutionalized [62]. In marginalized groups, heavier drinking patterns and a markedly higher prevalence of AD and AUDs are common. For example, in a systematic review of mental illness among homeless men in Western societies, Fazel et al. [63] found a pooled prevalence estimate of 38% for AD, with two factors being associated with the heterogeneity across studies: the more recent the study (as analyzed by decade), the higher the prevalence of AD, and studies from mainland Europe showed a higher prevalence of AD. For instance, two German studies observed a prevalence of AD that exceeded 50% among the homeless [64, 65], and in Ireland alcohol was found to be the most prevalent drug among the homeless, with alcohol problem rates above 70% as measured with the AUDIT [66]. Furthermore, in the Irish study, 13% of respondents named alcohol problems as the main reason for them becoming homeless.

AD has also been found to be highly prevalent in incarcerated populations [67]. In their systematic review, Fazel et al. [67] found that the prevalence for alcohol abuse and AD among males who were incarcerated ranged from 18 to 30%, and ranged from 10 to 24% among females who were incarcerated. Additionally, in a representative study of Irish males who were incarcerated demanded, a 6-month prevalence of 28.8% for AD and 39.3% for AUDs was observed (alcohol abuse and AD were defined to be exclusive [68]). In two English prisons in 2003, the prevalence of AD was 57% among men [69]. In a Greek prison, 37.5% of a randomly drawn sample of male inmates were diagnosed as having AD [70]. In a study of male inmates of a French prison in 2004, 19% were alcohol-dependent [71].

It has been observed in numerous studies that AD and AUDs show a high comorbidity with somatic and mental disorders, and thus are significantly more prevalent in both acute and psychiatric hospital wards [72, 73].

Thus, in specialized and marginalized populations not covered in surveys there is a much higher prevalence of AD and AUDs when compared to the general population. This indicates that the prevalence figures presented in our paper markedly underestimate the true prevalence; however, additional research is needed on the exact size of homeless, incarcerated and other institutionalized populations in various European countries to determine the extent of the underestimation of the population prevalence of AD. It is conceivable that this underestimation may be substantial [74]. In their working document titled ‘Confronting Homelessness in the European Union’ (http://ec.europa.eu/social/BlobServlet?docId = 9770&langId = en), the EU referred to 410,000 homeless people (defined as being without a house or a roof on any given night in the EU). This could imply that about 4.1 million people in the EU are exposed to rooflessness and houselessness over the span of 1 year for a shorter or longer period (calculations consistent with being based on ‘any’ night, combined with assumptions on the length of homelessness). Based on this prevalence, the overall number of people with AD in the EU would increase by an additional 1.5 million if homeless people were accounted for in the surveys. The additional numbers coming from incarcerated people would be comparatively lower, with about 200,000 additional people with AUD (based on the meta-analyses above and incarceration rates from http://www.nationmaster.com/country-info/stats/Crime/Prisoners/Per-capita).

We also hypothesize that marginalized populations overproportionally contribute to the harms which result from AD and AUDs, illustrated, for example, by the high standardized mortality rates associated with people with AD in treatment compared to the general population [7]. This finding may be the result of including some marginalized groups in treatment programs.

With respect to the associations examined in this paper, we found no association of AD with wealth at the between country level; however, this observation was expected as the strong correlations between economic wealth and alcohol consumption are restricted to low- and middle-income countries [75, 76]. We would have expected much stronger correlations of AD with both alcohol exposure (heavy drinking) and especially outcome (liver cirrhosis, injury). Additionally, heavy drinking is not included in the definition of AD and AUDs, as these are defined and measured by a number of criteria, some of which are based on loss of control, as specified in the ICD–10 or DSM IV (see above). It should be noted, however, that loss of control is perceived differently in different cultures [77, 78], which may seriously distort the relations with other variables. Where loss of control is stig-
matized in countries like Italy, Spain, and France, in
Nordic or Central Eastern European countries loss of
control may be one of the reasons why people drink.
Thus, ‘admitting’ to losing control equates in some coun-
tries to a statement that people had a good time, while for
countries in the South or Central West of Europe such an
admission is perceived as a weakness. We believe that
these cultural differences are at the core of the multifold
differences in the prevalence of AD between these re-

gions [79]. Accordingly, it seems that AUD prevalence is

very culture-specific, and thus correlations with other
health indicators are biased downwards because of the
high culture-specific variability. Heavy drinking rates
may be the better indicator for public health and health-
care planning [11, 79, 80]. Other factors contributing to
the low prevalence of AUDs in the South of Europe may
be lack of training in physicians, leading to perceptions
that some less severe AUDs may be ‘normal drinking’
[81].

Additionally, other alcohol-related, genetic, and social
factors, such as alcohol excise prices, taxation rates and
taxation types [82], alcohol availability [83, 84], alcohol
marketing policies [85], prevalence of people with vari-
ants in the genes that metabolize alcohol such as ALDH2
[86], prevalence of various religions [87], emancipation
of women [88], and unemployment rates [89], have also
been hypothesized to be causally related to alcohol con-
sumption and/or AD rates. In future studies associations
with these variables should be explored.

Other limitations of our work include measurement
errors stemming from the different operationalizations
of AD and AUDs in different countries (table 1). Thus, it
is not only the different cultures which impact on an-
wers to assessment instruments. There are also substan-
tial differences in how AD is measured, from the Statisti-
cal Office making estimations based on the liver cirrhosis
rate in Hungary, to various assessments in different
countries using variants of the CIDI, and a variety of op-
erationalizations in between (table 1). Multifold differ-
ces can result from only asking questions on AD of
people who show at least one criterion of abuse. More-
ever, the variants of the CIDI are different with respect
to who will be asked any question on AUDs (e.g. all
drinkers or all drinkers who consumed above a thresh-
old). These different operationalizations create biases,
which are reflected in the final comparisons. Additional
systematic work on assessing AUDs may necessary to be
able to compare the prevalence of AUDs in European
countries, e.g. a comparative survey in the EU using stan-
dardized methodology.

However, given the cultural specificity of criteria and
the relatively low correlations with outcomes, it may be
more advisable to invest into better ways to compara-
tively measure heavy drinking. Heavy drinking over
time may be a better indicator for what we currently call
an AUD, as it is better linked to biological and biochem-
ical definitions as a brain disease, as well as to health and
social outcomes [79, 80]. As an example from the data-
set we used in this study, AD prevalence was associated
with liver cirrhosis, one of the main outcomes of AD,
with Pearson correlations of \(r = 0.08 \) for women, and \(r =
0.25 \) for men; the associations of AD with heavy drink-
ing were \(r = 0.57 \) for women and \(r = 0.58 \) for men. Rely-
ing on heavy drinking as the best definition may also
reduce the very high stigmatization of AD [90], as it
could be handled similarly to continuous indicators such
as blood pressure (for the association between continu-
ous indicators and stigma, see [91]), and different inter-
ventions could be planned to reduce drinking without
necessarily involving a label such as dependence or ad-
diction [79, 92]. Of primary importance is that reducing
drinking has been shown as an effective form of treat-
ment for AD, and has been linked to reductions in mor-
tality and disability as well as to reductions in social
harm [79, 93].

Acknowledgements

The research leading to these results has been conducted in the
context of the European Community’s Seventh Framework Pro-
gramme under grant agreement No. 266813 – Addiction and Lifesty-
les in Contemporary Europe-Reframing Addictions Project
(ALICE-RAP). Participant organizations in ALICE-RAP can be
We would like to thank all members of the WP5 on counting ad-
dictions for contributing to this research. The Ontario Ministry of
Health and Long-Term Care has provided support to CAMH for
the salary of J.R. The contents of this paper are solely the respon-
sibility of the authors, and do not necessarily represent the official
views of the Ministry of Health and Long-Term Care or other
funders.

Disclosure Statement

No funding other than acknowledged above was received for
conceptualizing or writing the article. With respect to funding
from the pharmaceutical industry involved in the treatment of
substance use disorders, which could be perceived as a potential
conflict of interest, A.G. received honoraria and consultancy fees
from Abbvie, D&A Pharma and Lundbeck. L.K. received funding
for a research project from Lundbeck. J.R. received honoraria and
unrestricted educational grants from Lundbeck.
References

Alcohol Dependence in Europe

Eur Addict Res 2015;21:6–18
DOI: 10.1159/000356284

15

Wing JK, Babor T, Brugha T, Burke J, Cooper JE, Giel R, Jablenski A, Regier D, Sartorius N: SCAN: Schedules for Clinical Assessment in Neuropsychiatry. Arch Gen Psychiatry 1990;47:589–593.

