Header

UZH-Logo

Maintenance Infos

Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999


Pellicciotti, Francesca; Stephan, Christa; Miles, Evan; Herreid, Sam; Immerzeel, Walter W; Bolch, Tobias (2015). Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. Journal of Glaciology, 61(226):373-386.

Abstract

Thick debris cover on glaciers can significantly reduce ice melt. However, several studies have suggested that debris-covered glaciers in the Himalaya might have lost mass at a rate similar to debris-free glaciers. We reconstruct elevation and mass changes for the debris-covered glaciers of the upper Langtang valley, Nepalese Himalaya, using a digital elevation model (DEM) from 1974 stereo Hexagon satellite data and the 2000 SRTM (Shuttle Radar Topography Mission) DEM. Uncertainties are high in the accumulation areas, due to data gaps in the SRTM and difficulties with delineation of the glacier borders. Even with these uncertainties, we obtain thinning rates comparable to those of several other studies in the Himalaya. In particular, we obtain a total mass balance for the investigated debris- covered glaciers of the basin of –0.320.18mw.e.a

Abstract

Thick debris cover on glaciers can significantly reduce ice melt. However, several studies have suggested that debris-covered glaciers in the Himalaya might have lost mass at a rate similar to debris-free glaciers. We reconstruct elevation and mass changes for the debris-covered glaciers of the upper Langtang valley, Nepalese Himalaya, using a digital elevation model (DEM) from 1974 stereo Hexagon satellite data and the 2000 SRTM (Shuttle Radar Topography Mission) DEM. Uncertainties are high in the accumulation areas, due to data gaps in the SRTM and difficulties with delineation of the glacier borders. Even with these uncertainties, we obtain thinning rates comparable to those of several other studies in the Himalaya. In particular, we obtain a total mass balance for the investigated debris- covered glaciers of the basin of –0.320.18mw.e.a

Statistics

Citations

23 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

22 downloads since deposited on 26 Nov 2015
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:26 Nov 2015 07:54
Last Modified:28 Apr 2017 01:39
Publisher:International Glaciological Society
ISSN:0022-1430
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.3189/2015JoG13J237

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 5MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations