Header

UZH-Logo

Maintenance Infos

The timing of the circadian clock and sleep differ between napping and non-napping toddlers


Akacem, Lameese D; Simpkin, Charles T; Carskadon, Mary A; Wright, Kenneth P; Jenni, Oskar G; Achermann, Peter; LeBourgeois, Monique K (2015). The timing of the circadian clock and sleep differ between napping and non-napping toddlers. PLoS ONE, 10(4):e0125181.

Abstract

The timing of the internal circadian clock shows large inter-individual variability across the lifespan. Although the sleep-wakefulness pattern of most toddlers includes an afternoon nap, the association between napping and circadian phase in early childhood remains unexplored. This study examined differences in circadian phase and sleep between napping and non-napping toddlers. Data were collected on 20 toddlers (34.2±2.0 months; 12 females; 15 nappers). Children followed their habitual napping and non-napping sleep schedules (monitored with actigraphy) for 5 days before an in-home salivary dim light melatonin onset (DLMO) assessment. On average, napping children fell asleep during their nap opportunities on 3.6±1.2 of the 5 days before the DLMO assessment. For these napping children, melatonin onset time was 38 min later (p = 0.044; d = 0.93), actigraphically-estimated bedtime was 43 min later (p = 0.014; d = 1.24), sleep onset time was 59 min later (p = 0.006; d = 1.46), and sleep onset latency was 16 min longer (p = 0.030; d = 1.03) than those not napping. Midsleep and wake time did not differ by napping status. No difference was observed in the bedtime, sleep onset, or midsleep phase relationships with DLMO; however, the wake time phase difference was 47 min smaller for napping toddlers (p = 0.029; d = 1.23). On average, nappers had 69 min shorter nighttime sleep durations (p = 0.006; d = 1.47) and spent 49 min less time in bed (p = 0.019; d = 1.16) than non-nappers. Number of days napping was correlated with melatonin onset time (r = 0.49; p = 0.014). Our findings indicate that napping influences individual variability in melatonin onset time in early childhood. The delayed bedtimes of napping toddlers likely permits light exposure later in the evening, thereby delaying the timing of the clock and sleep. Whether the early developmental trajectory of circadian phase involves an advance associated with the decline in napping is a question necessitating longitudinal data as children transition from a biphasic to monophasic sleep-wakefulness pattern.

Abstract

The timing of the internal circadian clock shows large inter-individual variability across the lifespan. Although the sleep-wakefulness pattern of most toddlers includes an afternoon nap, the association between napping and circadian phase in early childhood remains unexplored. This study examined differences in circadian phase and sleep between napping and non-napping toddlers. Data were collected on 20 toddlers (34.2±2.0 months; 12 females; 15 nappers). Children followed their habitual napping and non-napping sleep schedules (monitored with actigraphy) for 5 days before an in-home salivary dim light melatonin onset (DLMO) assessment. On average, napping children fell asleep during their nap opportunities on 3.6±1.2 of the 5 days before the DLMO assessment. For these napping children, melatonin onset time was 38 min later (p = 0.044; d = 0.93), actigraphically-estimated bedtime was 43 min later (p = 0.014; d = 1.24), sleep onset time was 59 min later (p = 0.006; d = 1.46), and sleep onset latency was 16 min longer (p = 0.030; d = 1.03) than those not napping. Midsleep and wake time did not differ by napping status. No difference was observed in the bedtime, sleep onset, or midsleep phase relationships with DLMO; however, the wake time phase difference was 47 min smaller for napping toddlers (p = 0.029; d = 1.23). On average, nappers had 69 min shorter nighttime sleep durations (p = 0.006; d = 1.47) and spent 49 min less time in bed (p = 0.019; d = 1.16) than non-nappers. Number of days napping was correlated with melatonin onset time (r = 0.49; p = 0.014). Our findings indicate that napping influences individual variability in melatonin onset time in early childhood. The delayed bedtimes of napping toddlers likely permits light exposure later in the evening, thereby delaying the timing of the clock and sleep. Whether the early developmental trajectory of circadian phase involves an advance associated with the decline in napping is a question necessitating longitudinal data as children transition from a biphasic to monophasic sleep-wakefulness pattern.

Statistics

Citations

6 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

30 downloads since deposited on 04 Dec 2015
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2015
Deposited On:04 Dec 2015 08:13
Last Modified:07 Aug 2017 05:18
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0125181
PubMed ID:25915066

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 405kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations