Header

UZH-Logo

Maintenance Infos

Tumour delineation in oesophageal cancer - A prospective study of delineation in PET and CT with and without endoscopically placed clip markers


Thomas, Lena; Lapa, Constatin; Bundschuh, Ralph Alexander; Polat, Bülent; Sonke, Jan-Jakob; Guckenberger, Matthias (2015). Tumour delineation in oesophageal cancer - A prospective study of delineation in PET and CT with and without endoscopically placed clip markers. Radiotherapy and Oncology, 116(2):269-275.

Abstract

PURPOSE The objective was to analyse the value of F-18-fluorodesoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) for delineation of the Gross Tumour Volumes (GTVs) in primary radiotherapy of oesophageal cancer. METHOD 20 consecutive and prospective patients (13 men, 7 women) underwent FDG-PET/CT for initial staging and radiation treatment planning. After endoscopy-guided clipping of the tumour another CT study was acquired. The CT and the FDG-PET/CT were registered with a rigid and a non-rigid registration algorithm to compare the overlap between GTV contours defined with the following methods: manual GTV definition in (1) the CT image of the FDG-PET/CT, (2) the PET image of the FDG-PET/CT, (3) the CT study based on endoscopic clips (CT clip), and (4) in the PET-data using different semi-automatic PET segmentation algorithms including a gradient-based algorithm. The absolute tumour volumes, tumour length in cranio-caudal direction, as well as the overlap with the reference volume (CT-clip) were compared for all lesions and separately for proximal/distal tumours. RESULTS In 6 of the patients, FDG-PET/CT discovered previously unknown tumour locations, which resulted in either altered target volumes (n=3) or altered intent of treatment from curative to palliative (n=3) by upstaging to stage IV. For tumour segmentation a large variability between all algorithms was found. For the absolute tumour volumes with CT-clip as reference, no single PET-based segmentation algorithm performed better compared to using the manual CT delineation alone. The best correlation was found between the CT-clip and the gradient based segmentation algorithm (PET-edge, R(2)=0.84) as well as the manual CT-delineation (CT-manual R(2)=0.89). Non-rigid registration between CT and image FDG-PET/CT did not decrease variability between segmentation methods compared to rigid registration statistically significant. For the analysis of tumour length no homogeneous correlation was found. CONCLUSION Whereas FDG-PET was highly relevant for staging purposes, CT imaging with clipping of the tumour extension remains the gold standard for GTV delineation.

Abstract

PURPOSE The objective was to analyse the value of F-18-fluorodesoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) for delineation of the Gross Tumour Volumes (GTVs) in primary radiotherapy of oesophageal cancer. METHOD 20 consecutive and prospective patients (13 men, 7 women) underwent FDG-PET/CT for initial staging and radiation treatment planning. After endoscopy-guided clipping of the tumour another CT study was acquired. The CT and the FDG-PET/CT were registered with a rigid and a non-rigid registration algorithm to compare the overlap between GTV contours defined with the following methods: manual GTV definition in (1) the CT image of the FDG-PET/CT, (2) the PET image of the FDG-PET/CT, (3) the CT study based on endoscopic clips (CT clip), and (4) in the PET-data using different semi-automatic PET segmentation algorithms including a gradient-based algorithm. The absolute tumour volumes, tumour length in cranio-caudal direction, as well as the overlap with the reference volume (CT-clip) were compared for all lesions and separately for proximal/distal tumours. RESULTS In 6 of the patients, FDG-PET/CT discovered previously unknown tumour locations, which resulted in either altered target volumes (n=3) or altered intent of treatment from curative to palliative (n=3) by upstaging to stage IV. For tumour segmentation a large variability between all algorithms was found. For the absolute tumour volumes with CT-clip as reference, no single PET-based segmentation algorithm performed better compared to using the manual CT delineation alone. The best correlation was found between the CT-clip and the gradient based segmentation algorithm (PET-edge, R(2)=0.84) as well as the manual CT-delineation (CT-manual R(2)=0.89). Non-rigid registration between CT and image FDG-PET/CT did not decrease variability between segmentation methods compared to rigid registration statistically significant. For the analysis of tumour length no homogeneous correlation was found. CONCLUSION Whereas FDG-PET was highly relevant for staging purposes, CT imaging with clipping of the tumour extension remains the gold standard for GTV delineation.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Radiation Oncology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:August 2015
Deposited On:27 Nov 2015 13:25
Last Modified:11 Jan 2017 09:05
Publisher:Elsevier
ISSN:0167-8140
Publisher DOI:https://doi.org/10.1016/j.radonc.2015.07.007
PubMed ID:26364886

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations