Header

UZH-Logo

Maintenance Infos

Antibody-drug conjugates for tumor targeting-novel conjugation chemistries and the promise of non-igg binding proteins


Merten, Hannes; Brandl, Fabian; Plückthun, Andreas; Zangemeister-Wittke, Uwe (2015). Antibody-drug conjugates for tumor targeting-novel conjugation chemistries and the promise of non-igg binding proteins. Bioconjugate Chemistry, 26(11):2176-2185.

Abstract

Antibody-drug conjugates (ADCs) have emerged as a promising class of anticancer agents, combining the specificity of antibodies for tumor targeting and the destructive potential of highly potent drugs as payload. An essential component of these immunoconjugates is a bifunctional linker capable of reacting with the antibody and the payload to assemble a functional entity. Linker design is fundamental, as it must provide high stability in the circulation to prevent premature drug release, but be capable of releasing the active drug inside the target cell upon receptor-mediated endocytosis. Although ADCs have demonstrated an increased therapeutic window, compared to conventional chemotherapy in recent clinical trials, therapeutic success rates are still far from optimal. To explore other regimes of half-life variation and drug conjugation stoichiometries, it is necessary to investigate additional binding proteins which offer access to a wide range of formats, all with molecularly defined drug conjugation. Here, we delineate recent progress with site-specific and biorthogonal conjugation chemistries, and discuss alternative, biophysically more stable protein scaffolds like Designed Ankyrin Repeat Proteins (DARPins), which may provide such additional engineering opportunities for drug conjugates with improved pharmacological performance.

Abstract

Antibody-drug conjugates (ADCs) have emerged as a promising class of anticancer agents, combining the specificity of antibodies for tumor targeting and the destructive potential of highly potent drugs as payload. An essential component of these immunoconjugates is a bifunctional linker capable of reacting with the antibody and the payload to assemble a functional entity. Linker design is fundamental, as it must provide high stability in the circulation to prevent premature drug release, but be capable of releasing the active drug inside the target cell upon receptor-mediated endocytosis. Although ADCs have demonstrated an increased therapeutic window, compared to conventional chemotherapy in recent clinical trials, therapeutic success rates are still far from optimal. To explore other regimes of half-life variation and drug conjugation stoichiometries, it is necessary to investigate additional binding proteins which offer access to a wide range of formats, all with molecularly defined drug conjugation. Here, we delineate recent progress with site-specific and biorthogonal conjugation chemistries, and discuss alternative, biophysically more stable protein scaffolds like Designed Ankyrin Repeat Proteins (DARPins), which may provide such additional engineering opportunities for drug conjugates with improved pharmacological performance.

Statistics

Citations

Dimensions.ai Metrics
16 citations in Web of Science®
15 citations in Scopus®
19 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 11 Dec 2015
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:18 November 2015
Deposited On:11 Dec 2015 15:01
Last Modified:14 Feb 2018 09:58
Publisher:American Chemical Society (ACS)
ISSN:1043-1802
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/acs.bioconjchem.5b00260
PubMed ID:26086208

Download