Header

UZH-Logo

Maintenance Infos

Mesenteric Fat Lipolysis Mediates Obesity-associated Hepatic Steatosis and Insulin Resistance


Wueest, Stephan; Item, Flurin; Lucchini, Fabrizio C; Challa, Tenagne D; Müller, Werner; Blüher, Matthias; Konrad, Daniel (2016). Mesenteric Fat Lipolysis Mediates Obesity-associated Hepatic Steatosis and Insulin Resistance. Diabetes, 65(1):140-148.

Abstract

Hepatic steatosis and insulin resistance are among the most prevalent metabolic disorders and tightly associated with obesity and type 2 diabetes. However, underlying mechanism linking obesity to hepatic lipid accumulation and insulin resistance are incompletely understood. Glycoprotein 130 (gp130) is the common signal transducer of all interleukin 6 (IL-6) cytokines. Herein, we provide evidence that gp130-mediated adipose tissue lipolysis promotes hepatic steatosis and insulin resistance. In obese mice, adipocyte-specific gp130 deletion reduced basal lipolysis and enhanced insulin's ability to suppress lipolysis from mesenteric but not epididymal adipocytes. Consistently, free fatty acid levels were reduced in portal but not in systemic circulation of obese knockout mice. Importantly, adipocyte-specific gp130 knockout mice were protected from high fat diet (HFD)-induced hepatic steatosis as well as insulin resistance. In humans, omental but not subcutaneous IL-6 mRNA expression correlated positively with liver lipid accumulation (r=0.31; p<0.05) and negatively with euglycemic clamp glucose infusion rate (r=-0.28; p<0.05). Our results demonstrate that IL-6 cytokine-induced lipolysis may be restricted to mesenteric WAT and that it contributes to hepatic insulin resistance and steatosis. Therefore, blocking IL-6 cytokine signaling in (mesenteric) adipocytes may be a novel approach to blunt detrimental fat-liver crosstalk in obesity.

Abstract

Hepatic steatosis and insulin resistance are among the most prevalent metabolic disorders and tightly associated with obesity and type 2 diabetes. However, underlying mechanism linking obesity to hepatic lipid accumulation and insulin resistance are incompletely understood. Glycoprotein 130 (gp130) is the common signal transducer of all interleukin 6 (IL-6) cytokines. Herein, we provide evidence that gp130-mediated adipose tissue lipolysis promotes hepatic steatosis and insulin resistance. In obese mice, adipocyte-specific gp130 deletion reduced basal lipolysis and enhanced insulin's ability to suppress lipolysis from mesenteric but not epididymal adipocytes. Consistently, free fatty acid levels were reduced in portal but not in systemic circulation of obese knockout mice. Importantly, adipocyte-specific gp130 knockout mice were protected from high fat diet (HFD)-induced hepatic steatosis as well as insulin resistance. In humans, omental but not subcutaneous IL-6 mRNA expression correlated positively with liver lipid accumulation (r=0.31; p<0.05) and negatively with euglycemic clamp glucose infusion rate (r=-0.28; p<0.05). Our results demonstrate that IL-6 cytokine-induced lipolysis may be restricted to mesenteric WAT and that it contributes to hepatic insulin resistance and steatosis. Therefore, blocking IL-6 cytokine signaling in (mesenteric) adipocytes may be a novel approach to blunt detrimental fat-liver crosstalk in obesity.

Statistics

Citations

4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

26 downloads since deposited on 15 Dec 2015
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:January 2016
Deposited On:15 Dec 2015 13:44
Last Modified:23 Apr 2017 05:26
Publisher:American Diabetes Association
ISSN:0012-1797
Additional Information:This is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.2337/db15-0941
PubMed ID:26384383

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 516kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations