Header

UZH-Logo

Maintenance Infos

Growth factors regulating neural crest cell fate decisions


Sommer, Lukas (2006). Growth factors regulating neural crest cell fate decisions. Advances in Experimental Medicine and Biology, 589:197-205.

Abstract

Because of its unique ability to generate a wide variety of both neural and nonneural derivatives, the neural crest is an ideal model system to study the factors regulating cell lineage decisions in stem and progenitor cells. The use of various cell culture techniques and in vivo functional assays, including cell type-specific gene manipulation in mouse, helped to identify signaling factors involved in this process. Moreover, it became apparent that the biological functions of growth factors acting on neural crest cells depend on the context provided by the extracellular microenvironment. Thus, signaling molecules have to be viewed as parts of complex networks that change with time and location. Neural crest cells have to integrate these signals to ensure the generation of appropriate numbers of differentiating progeny. It will be important to determine how such signaling networks are established and how they elicit multiple signaling responses in neural crest cells to activate appropriate genetic programs.

Abstract

Because of its unique ability to generate a wide variety of both neural and nonneural derivatives, the neural crest is an ideal model system to study the factors regulating cell lineage decisions in stem and progenitor cells. The use of various cell culture techniques and in vivo functional assays, including cell type-specific gene manipulation in mouse, helped to identify signaling factors involved in this process. Moreover, it became apparent that the biological functions of growth factors acting on neural crest cells depend on the context provided by the extracellular microenvironment. Thus, signaling molecules have to be viewed as parts of complex networks that change with time and location. Neural crest cells have to integrate these signals to ensure the generation of appropriate numbers of differentiating progeny. It will be important to determine how such signaling networks are established and how they elicit multiple signaling responses in neural crest cells to activate appropriate genetic programs.

Statistics

Citations

19 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2006
Deposited On:04 Dec 2015 07:40
Last Modified:05 Apr 2016 19:38
Publisher:Springer
ISSN:0065-2598
Publisher DOI:https://doi.org/10.1007/978-0-387-46954-6_12
PubMed ID:17076283

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations