Header

UZH-Logo

Maintenance Infos

Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling


Kléber, Maurice; Lee, Hye-Youn; Wurdak, Heiko; Buchstaller, Johanna; Riccomagno, Martin M; Ittner, Lars M; Suter, Ueli; Epstein, Douglas J; Sommer, Lukas (2005). Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. Journal of Cell Biology, 169(2):309-320.

Abstract

Canonical Wnt signaling instructively promotes sensory neurogenesis in early neural crest stem cells (eNCSCs) (Lee, H.Y., M. Kleber, L. Hari, V. Brault, U. Suter, M.M. Taketo, R. Kemler, and L. Sommer. 2004. Science. 303:1020-1023). However, during normal development Wnt signaling induces a sensory fate only in a subpopulation of eNCSCs while other cells maintain their stem cell features, despite the presence of Wnt activity. Hence, factors counteracting Wnt signaling must exist. Here, we show that bone morphogenic protein (BMP) signaling antagonizes the sensory fate-inducing activity of Wnt/beta-catenin. Intriguingly, Wnt and BMP act synergistically to suppress differentiation and to maintain NCSC marker expression and multipotency. Similar to NCSCs in vivo, NCSCs maintained in culture alter their responsiveness to instructive growth factors with time. Thus, stem cell development is regulated by combinatorial growth factor activities that interact with changing cell-intrinsic cues.

Abstract

Canonical Wnt signaling instructively promotes sensory neurogenesis in early neural crest stem cells (eNCSCs) (Lee, H.Y., M. Kleber, L. Hari, V. Brault, U. Suter, M.M. Taketo, R. Kemler, and L. Sommer. 2004. Science. 303:1020-1023). However, during normal development Wnt signaling induces a sensory fate only in a subpopulation of eNCSCs while other cells maintain their stem cell features, despite the presence of Wnt activity. Hence, factors counteracting Wnt signaling must exist. Here, we show that bone morphogenic protein (BMP) signaling antagonizes the sensory fate-inducing activity of Wnt/beta-catenin. Intriguingly, Wnt and BMP act synergistically to suppress differentiation and to maintain NCSC marker expression and multipotency. Similar to NCSCs in vivo, NCSCs maintained in culture alter their responsiveness to instructive growth factors with time. Thus, stem cell development is regulated by combinatorial growth factor activities that interact with changing cell-intrinsic cues.

Statistics

Citations

112 citations in Web of Science®
125 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

21 downloads since deposited on 14 Dec 2015
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:25 April 2005
Deposited On:14 Dec 2015 14:40
Last Modified:06 Aug 2017 23:20
Publisher:Rockefeller University Press
ISSN:0021-9525
Additional Information:Copyright: the Authors
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1083/jcb.200411095
PubMed ID:15837799

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 5MB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations