Nonadiabatic vibrational dynamics in the HCO$_2^-$ H$_2$O complex

Hamm, Peter; Stock, Gerhard

Abstract: Based on extensive ab initio calculations and the time-propagation of the nuclear Schrödinger equation, we study the vibrational relaxation dynamics and resulting spectral signatures of the OH stretch vibration of a hydrogen-bonded complex, HCO$_2^-$ H$_2$O. Despite their smallness, it has been shown experimentally by Johnson and coworkers that the gas-phase infrared spectra of these types of complexes exhibit much of the complexity commonly observed for hydrogen-bonded systems. That is, the OH stretch band exhibits a significant red shift together with an extreme broadening and a pronounced substructure, which reflects its very strong anharmonicity. Employing an adiabatic separation of time scales between the three intramolecular high-frequency modes of the water molecule and the three most important intermolecular low-frequency modes of the complex, we calculate potential energy surfaces (PESs) of the ground and the first excited states of the high-frequency modes and identify a vibrational conical intersection between the PESs of the OH stretch fundamental and the HOH bend overtone. By performing a time-dependent propagation of the resulting system, we show that the conical intersection affects a coherent population transfer between the two states, the first step of which being ultrafast (60 fs) and irreversible. The subsequent relaxation of vibrational energy into the HOH bend and ground state occurs incoherently but also quite fast (1 ps), although the corresponding PESs are well separated in energy. Owing to the smaller effective mass difference between light and heavy degrees of freedom, the adiabatic ansatz is consequently less significant for vibrations than in the electronic case. Based on the model, we consider several approximations to calculate the measured Ar-tag action spectrum of HCO$_2^-$ H$_2$O and achieve semiquantitative agreement with the experiment.

DOI: https://doi.org/10.1063/1.4932189
Nonadiabatic Vibrational Dynamics in the HCO$_2$·H$_2$O Complex

Peter Hamm1 and Gerhard Stock2

1Department of Chemistry, University of Zurich, Zurich, Switzerland and 2Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany

(Dated: September 15, 2015)

Based on extensive ab initio calculations and the time-propagation of the nuclear Schrödinger equation, we study the vibrational relaxation dynamics and resulting spectral signatures of the OH stretch vibration of a hydrogen-bonded complex, HCO$_2$·H$_2$O. Despite their smallness, it has been shown experimentally by Johnson and coworkers that the gas-phase infrared spectra of these types of complexes exhibit much of the complexity commonly observed for hydrogen-bonded systems. That is, the OH stretch band exhibits a significant red shift together with an extreme broadening and a pronounced substructure, which reflects its very strong anharmonicity. Employing an adiabatic separation of timescales between the three intramolecular high-frequency modes of the water molecule and the three most important intermolecular low-frequency modes of the complex, we calculate potential energy surfaces (PESs) of the ground and the first excited states of the high-frequency modes and identify a vibrational conical intersection between the PESs of the OH stretch fundamental and the HOH bend overtone. By performing a time-dependent propagation of the resulting system, we show that the conical intersection affects a coherent population transfer between the two states, the first step of which being ultrafast (60 fs) and irreversible. The subsequent relaxation of vibrational energy into the HOH bend and ground state occurs incoherently but also quite fast (1 ps), although the corresponding PESs are well separated in energy. Owing to the smaller effective mass difference between light and heavy degrees of freedom, the adiabatic ansatz is consequently less significant for vibrations than in the electronic case. Based on the model, we consider several approximations to calculate the measured Ar-tag action spectrum of HCO$_2$·H$_2$O and achieve semiquantitative agreement with the experiment.

I. INTRODUCTION

The hydrogen bond is a weak chemical bond that is of eminent importance, in particular for biomolecular systems. [1, 2] Also the many anomalies in the thermodynamic properties of water result from hydrogen bonding. [3] Linear and nonlinear vibrational spectroscopy is a very common tool to study the properties of hydrogen bonds,[4, 5] and often reveals results that are very peculiar and very different from any other vibrational mode. That is, vibrational bands of OH or NH-groups involved in hydrogen bonds are typically very broad and exhibit strong red shifts as compared to the non-hydrogen bonded case. The prototype example is the OH-stretch vibration of liquid water, where both broadening and solvation shift are a few 100 cm$^{-1}$, as opposed to typically 10 cm$^{-1}$ of “normal” vibrational modes. Furthermore, if a hydrogen bond is of intramolecular nature, [6–8] binding a dimer with reasonably well defined structure,[9, 10] or in hydrogen-bonded molecular crystals,[11, 12] the vibrational band often contains a pronounced substructure. The nonlinear pump-probe response of these infrared (IR) transitions, in turn, often decays on an ultrafast (a few 100 fs) time-scale [13–15] and in some cases also exhibits complex oscillatory features.[6–12] It is the very anharmonic nature of the hydrogen bond potentials that gives rise to the peculiar vibrational spectroscopy,[16–22] i.e., in essence the fact that the typical dissociation energy of a hydrogen bond is in the same range as the frequency of its vibrational modes. It has also been shown that the problem is inherently high-dimensional,[17–22] which renders the modeling of the quantum dynamics demanding and the interpretation of the computational results complicated.

In a series of papers, Johnson and coworkers have investigated hydrogen bonded complexes of a water molecule with various molecular ions such as NO$_3^−$, HCO$_2$−, CH$_3$NO$_2^−$, and CH$_3$CO$_2^−$ in the gas phase by Ar-tag IR spectroscopy.[18, 23–26] In addition in related work, Neumark and coworkers have studied the complex with NO$_3^−$ [27]. Despite the fact that these complexes show all the nontrivial features of the IR spectroscopy of hydrogen bonds, their spectral signatures are particularly simple. That is, the OH stretch vibration of the water molecule splits into a single pronounced “Franck-Condon”-like progression due to the strong anharmonic coupling to the water rocking mode.[18, 22, 23] Furthermore, this Franck-Condon progression sits on a broad background that might indicate an ultrafast relaxation channel. While the Franck-Condon progression has been reproduced using cubic ab-initio derived force constants [18, 22], the broad background and its underlying dynamics still awaits an explanation. Owing to the smallness of these complexes, one can treat both their quantum chemistry as well as their quantum dynamics on a reasonably high level that should lead to a qualitatively correct picture of the underlying mechanism.

We have recently introduced the concept of vibrational conical intersections [28, 29] as a possible mechanism for ultrafast vibrational relaxation, just like it is for the electronic case.[30–32] The very concept of a conical intersection requires an adiabatic separation of timescales of two sets of degrees of freedom, which is naturally given in the electronic case via the Born-Oppenheimer
approximation, but which is less common for vibrational transitions.[18, 20, 22, 33–36] In the context of vibrational conical intersections, an adiabatic separation has been introduced between high-frequency OH stretch and bend vibrations on the one hand, and lower-frequency backbone vibrations [28] or torsional modes [37, 38] on the other hand within one molecule. Alternatively, in the case of the hydrogen-bonded water dimer, the high-frequency intramolecular modes have been separated from the the lower-frequency intermolecular modes.[29]

Hydrogen-bonded complexes are particularly likely to reveal vibrational conical intersections, since the change of its intermolecular configuration leads to comparably large tunings of the OH-stretch vibrations involved in the hydrogen bond, that is, the very effect that gives rise to the peculiar spectroscopic properties discussed above.

Applying this adiabatic approach, in this work we study theoretically the vibrational relaxation dynamics and resulting spectral signature of one of the complexes introduced by Johnson and coworkers, HCO$_2$H$_2$O.[26] We chose that particular complex because of its smallness and its high C$_{2v}$ symmetry. NO$_2$-H$_2$O, which would be even smaller, has been discarded since its C$_{2v}$ structure is not the lowest energy structure.[23] HCO$_2$H$_2$O exhibits the same Franck-Condon-like progression as the other clusters in addition to a broad background (see Supplementary Material of Ref. 26 and Fig. 8c below), the latter of which, however, being less pronounced as compared to complexes with either CH$_3$NO$_2$ or CH$_3$CO$_2$.[23] Including three intramolecular and three intermolecular degrees of freedom, we explore the coherent (i.e., oscillatory) population transfer after excitation of the OH-stretch vibration into the HOH-bend overtone, which is in close resonance and coupled to the OH-stretch vibration by a conical intersection. Furthermore, relaxation into the HOH-bend fundamental and the ground state is observed, which occurs in an incoherent (i.e., exponential) manner. Although this second relaxation is not facilitated by a curve crossing, its timescale is not significantly slower than that of the first coherent process. We close with a discussion of the virtues and limitations of the adiabatic ansatz to interpret vibrational dynamics.

II. THEORY AND METHODS

A. Separation of fast and slow vibrations

In direct analogy the Born-Oppenheimer approach to separate electronic and nuclear degrees of freedom, we partition the vibrations into high-frequency modes $q = \{q_i\}$ and low-frequency modes $Q = \{Q_j\}$. This yields the Hamiltonian

$$H = T_q + T_Q + V(q, Q),$$

(1)

where T_q and T_Q denote the kinetic energy of the high- and low-frequency modes, respectively, and $V(q, Q)$ represents the potential energy surface (PES) of these vibrations in the electronic ground state. The time-dependent Schrödinger equation for the system reads

$$ih \frac{\partial}{\partial t} |\Psi(t)\rangle = H |\Psi(t)\rangle.$$

(2)

Fixing the low-frequency modes $\{Q_j\}$ to a constant value, we first solve the Schrödinger equation for the high-frequency modes

$$[T_Q + V(q, Q) - W_{nm}^{\text{ad}}(Q)] |\psi_n^{\text{ad}}\rangle = 0,$$

(3)

which yields the vibrational adiabatic states $|\psi_n^{\text{ad}}\rangle$ and the corresponding adiabatic PES $W_{nm}^{\text{ad}}(Q)$. As the states $|\psi_n^{\text{ad}}\rangle$ represent a complete basis set for the high-frequency modes, we can expand the total vibrational wave function,

$$|\Phi(Q)\rangle = \sum_n \chi_n^{\text{ad}}(Q) |\psi_n^{\text{ad}}\rangle,$$

(4)

where the wave functions $\chi_n^{\text{ad}}(Q)$ account for the dynamics of the low-frequency modes on the various PESs. Insertion into the Schrödinger equation for the total Hamiltonian [Eq. (1)] yields the coupled-channel equations

$$[T_Q + W_{nm}^{\text{ad}}(Q) - E] \chi_n^{\text{ad}}(Q) = \sum_m \Lambda_{nm} \chi_m^{\text{ad}}(Q),$$

(5)

where the operator Λ_{nm} accounts for the nonadiabatic coupling between the adiabatic vibrational states $|\psi_n^{\text{ad}}\rangle$ and $|\psi_m^{\text{ad}}\rangle$. In the commonly used adiabatic approximation, one assumes that $\Lambda_{nm} = 0$, which leads to independent low-frequency vibrational dynamics on the adiabatic PESs $W_{nm}^{\text{ad}}(Q)$.

Due to the presence of kinetic couplings containing derivatives, the computation of the nonadiabatic coupling matrix $\{\Lambda_{nm}\}$ is quite tedious. Usually one therefore changes to a diabatic representation with states $|\psi_n^{\text{dia}}\rangle$, which are related to the adiabatic states via a unitary transformation. In the diabatic representation the kinetic couplings vanish at the expense of a nondiagonal potential energy matrix V^{dia}, resulting in the diabatic Hamiltonian

$$H^{\text{dia}} = T_Q 1 + \sum_{n,m} |\psi_n^{\text{dia}}\rangle V^{\text{dia}}_{nm} |\psi_m^{\text{dia}}\rangle.$$

(6)

Employing a time-dependent formulation, the Schrödinger equation of the coupled system in the diabatic representation reads

$$ih \frac{\partial}{\partial t} |\Psi(t)\rangle = H^{\text{dia}} |\Psi(t)\rangle,$$

(7)

where

$$|\Psi(t)\rangle = \sum_m \chi_m^{\text{dia}}(Q,t) |\psi_m^{\text{dia}}\rangle$$

(8)

represents the time-dependent state vector in the diabatic representation. The wave function $\chi_n^{\text{dia}}(Q,t)$ is the
main quantity of interest as it describes the vibrational dynamics of the low-frequency modes \{Q_j\} on the coupled PESs \(V_{nm}\) generated by the high-frequency modes \(\{q_i\}\). From the time-dependent propagation of \(|\Phi(t)\rangle\), we calculate the time-dependent population probabilities of the diabatic states

\[
P_m(t) = |\langle \Phi(t) | \psi_{\text{dia}}^m \rangle|^2 = \langle \chi_{\text{dia}}^m(t) | \chi_{\text{dia}}^m(t) \rangle, \tag{9}
\]

which are a key quantity to discuss the vibrational relaxation dynamics of the system, as \(P_m(t) = \text{const.}\) in the absence of coupling.

B. Definition of inter- and intramolecular coordinates

As a first step, we need to choose suitable coordinates for the intramolecular high-frequency modes \(\{q_i\}\) and intermolecular low-frequency modes \(\{Q_j\}\) of \(\text{HCO}_2\cdot\text{H}_2\text{O}\). Rather than using the normal modes of the complex directly, which has been shown to reveal a very poor adiabatic representation,[29] we use “internal coordinates”, where the intramolecular coordinates are the normal modes of either the \(\text{H}_2\text{O}\) or the \(\text{HCO}_2\) monomer, which move (rotate) as the molecules moves (rotates) in the complex along the intermolecular modes. The intermolecular coordinates \(\{Q_j\}\), on the other hand, are curvilinear coordinates that keep the individual molecules rigid. As described in detail in Ref. 29, their linearisations for small displacements are mapped onto the corresponding cartesian normal mode coordinates.

From the nine intra-molecular modes, we considered only those of the water molecule, for which strongly anharmonic effects in their line shapes have been observed experimentally.[23] That is, we considered the two OH-stretch modes of the water molecule \((q_1\) and \(q_2)\), which we define as local modes rather than the symmetric and asymmetric stretch vibrations, see Fig. 1a), as well as the HOH bending mode \((q_3)\) because of its Fermi-resonance with the OH stretching modes. Of the in total six intermolecular modes, on the other hand, we considered only the three in-plane modes \(Q_1, Q_2\) and \(Q_3\) depicted in Fig. 1b, as they tune the frequencies of the water molecule’s intramolecular modes as a function of mode displacement by far more than the out-of-plane modes. All coordinates \(\{Q_j\}\) and \(\{q_i\}\) are defined in dimensionless normal mode units (to that end, the curvilinear coordinates \(\{Q_j\}\) have been scaled such that they agree for small displacements with the corresponding normal modes defined in dimensionless units).

C. Quantum-chemical calculations

Based on the above defined coordinates, we next wish to calculate the potential energy \(V(q, Q)\) of Hamiltonian (1). To this end, we performed ab initio calculations at the MP2/aug-cc-pvdz level of theory (which is the same level of theory as in Ref. 18), using the Gaussian09 program package.[39] Intending to exploit a separation between high-frequency modes \(\{q_i\}\) and low-frequency modes \(\{Q_j\}\), we first calculate the potential energy \(V(q; Q)\) as a function of the \(\{q_i\}\), assuming a given set of intermolecular coordinates \(\{Q_j\}\), i.e., for a given configuration of the two molecules with respect to each other. For each such configuration, the positions \(\{q_i\}\) of all intramolecular modes, including those of the \(\text{HCO}_2\) molecule, have first been minimized. Using that minimum-energy point \(\{q_{i0}\}\) as origin, the potential energy is power-expanded as a function of the three \(\text{H}_2\text{O}\) modes \(q_1, q_2, q_3\) via

\[
V(q; Q) = \sum_{i,j,k=0}^4 a_{ijk} \delta q_i^0 \delta q_j^0 \delta q_k^0 + \sum_{l=1}^3 b_l \delta q_l^0, \tag{10}
\]

where \(\delta q_n = q_n - q_n^{(0)}\) and the coefficients \(a_{ijk}\) and \(b_l\) as well as the minima \(\{q_i^{(0)}\}\) are functions of \(Q\). Coefficients \(a_{ijk}\) with \(i + j + k = 1\) are zero since the potential energy is expanded around its minimum \(\{q_i^{(0)}\}\). The resulting 125 nonzero coefficients \(a_{ijk}\) and \(b_l\) were determined by inversion from 125 single point quantum-chemical calculations. To determine the positions of these 125 points, we started from a \(5 \times 5 \times 5\) cube centered around the origin and then modified the distance of each point to the origin such that two ellipsoids were obtained. The inner ellipsoid contained \(3^3 - 1 = 26\) points, the outer ellipsoid \(5^3 - 27 = 98\) points. The radius of the inner ellipsoid was 1.6 in the \(q_1\) and \(q_2\) directions and 1.6 \(\cdot \sqrt{2}\) in the \(q_3\) direction (since the first overtone is most relevant for the HOH bend mode) and that of the outer ellipsoid 3.0 and 3.0 \(\cdot \sqrt{2}\), respectively. These radii were chosen to minimize the error in the energy of the OH stretch fundamentals and the HOH bend overtone.

Using a harmonic-oscillator basis \(\{n_{ij}\}\) to represent the high-frequency modes \(\{q_i\}\) and standard creation \((\hat{a}^\dagger)\) and annihilation \((\hat{a})\) operators, the matrix elements

![FIG. 1: Vibrational modes of HCO_2·H_2O considered in this study: (a) intramolecular high-frequency modes and (b) intermolecular low-frequency modes. The harmonic frequencies are given in parenthesis; in the case of the two stretch vibra-termolecular low-frequency modes.](image)
of the corresponding Hamiltonian of the high-frequency modes are readily constructed. A “pruned” basis [40] including up to 8 quanta for the OH stretch vibrations and 16 quanta for the HOH vibration was used for this purpose, resulting in 285 basis states. Due to the quintic terms, the potential Eq. 10 is unbounded from below in principle. We have verified that the limited basis with maximal 8 quanta in the OH stretch or 16 quanta for the HOH bend does however not yet explore regions of the potential energy surface where the potential turns over and diverges towards $-\infty$.

The above described calculation of the potential energy $V(q; Q)$ needs to be done for all low-frequency positions $Q = (Q_1, Q_2, Q_3)$ of interest. Since the PES is highly anharmonic in Q-space, a power expansion as done for the q-space [Eq. (10)] is not feasible. Alternatively, we use a discrete value representation (DVR), [41] which requires that the DVR basis functions are calculated on an equidistant grid. The DVR also facilitates a computationally inexpensive calculation of the kinetic energy operator T_Q. [42] Since the final goal is to calculate the vibrational relaxation from the initially excited OH-states cascading down via the HOH-bend into the ground state, we need to converge Q-basis on the ground state surface up to the regime of the excitation energy. On the one hand, this determines the grid spacing needed to converge the kinetic energy, for which we chose $\Delta Q_1 = 0.3$, $\Delta Q_2 = 0.4$ and $\Delta Q_3 = 0.5$. On the other hand, it requires that grid points up to at least that energy regime are included. As the overall calculation becomes computationally expensive, we cannot use a cuboid-shaped three-dimensional grid, but rather extend the grid step-wise in all three dimensions, starting from the origin, until the energy of the ground state exceeded 3500 cm$^{-1}$ (plus zero-point energy). This procedure results in 108824 grid points, only half of which have to be calculated explicitly owing to the symmetry of the molecular complex.

D. Representation of the Wave Function

As outcome of the above introduced formulation, we may express the total vibrational wave function as

$$|\Phi(Q)\rangle = \sum_{k,n_1,n_2,n_3} c^{(k)}_{n_1,n_2,n_3}(Q_1, Q_2, Q_3) |n_1\rangle|n_2\rangle|n_3\rangle,$$

(11)

where the harmonic-oscillator states $|n_i\rangle$ represent the high-frequency modes $\{q_i\}$ and the DVR basis functions $\{\xi_k\}$ represent the low-frequency modes $\{Q_j\}$. Within our model assumptions (i.e., restriction to six modes and convergence of basis sets), Eq. (11) constitutes the numerically exact representation of the vibrational wave function. With a total number of 285 \times 108824 $\approx 3 \times 10^7$ basis functions, however, the propagation of the corresponding time-dependent Schrödinger equation (2) is quite tedious.

To significantly reduce the basis size of the problem, we may exploit the timescale separation of fast and slow vibrations explained in Sec. II A and represent the high-frequency modes $\{q_i\}$ in terms of a few diabatic eigenstates $|\psi^{\text{dia}}_n\rangle$ (instead of 285 harmonic-oscillator states). For the discussion below, we restricted the state space to five states, that is the overall ground state $|0, 0, 0\rangle$, the fundamentals $|1, 0, 0\rangle$ and $|0, 1, 0\rangle$ of the two OH stretch vibrations, and the fundamental $|0, 0, 1\rangle$ and the first overtone $|0, 0, 2\rangle$ of the HOH bend vibration. Using the harmonic-oscillator basis $\{|n_i\rangle\}$, we first calculated the adiabatic eigenstates $|\psi^{\text{ad}}_n\rangle$ and the corresponding adiabatic PESs $W^{\text{ad}}_n(Q)$ by solving the Schrödinger equation for the high-frequency modes, Eq. (3). The size of the basis together with the power expansion of the PES [Eq. (10)] results in a convergence of the eigenfrequencies of the OH stretch states $|1, 0, 0\rangle$ and $|0, 1, 0\rangle$ and the HOH bend first overtone $|0, 0, 2\rangle$ of $\lesssim 10$ cm$^{-1}$, which for a selection of Q-points has been verified against a much denser q-grid and a much larger basis $\{|n_i\rangle\}$.

As a simple means to introduce diabatic basis states, we employ a vibrational self-consistent field (VSCF) approach. [43] VSCF wave-functions can be viewed as an approximate diabatic representation, in the sense that they do not change their character even when the energies of two states cross as a function of Q, i.e., $\partial \psi^{\text{dia}}_m/q Q_j$ remains small. For a given intermolecular configuration (Q_1, Q_3, Q_3), the VSCF wave-functions are expressed as a product ansatz

$$\psi^{\text{dia}}_m(q) = \phi_{j1}(q_1) \phi_{j2}(q_2) \phi_{j3}(q_3),$$

(12)

where $\phi_{ji}(q_i)$ describes the ji-th eigenstate of high-frequency mode q_i, with $m = (j_1, j_2, j_3)$ representing the corresponding quantum numbers. To construct the diabatic states $|\psi^{\text{dia}}_m\rangle$, we iteratively and self-consistently solved the one-dimensional Schrödinger equations [44]

$$\left[\frac{\omega_i}{2} \frac{\partial^2}{\partial q_i^2} + \nabla_i(q_i)\right] \phi_{ji} = E_{ji} \phi_{ji},$$

(13)

with

$$\nabla_i(q_i) = \sum_{j \neq i} \frac{\phi^{j*}_i}{\langle \prod_{k \neq i} \phi_{jk} | V(q; Q) | \prod_{k \neq i} \phi_{jk} \rangle}.$$

(14)

As an initial guess of $\nabla_i(q_i)$ for the first step of the VCSF iteration, we used the corresponding harmonic states.

To construct the diabatic Hamiltonian in Eq. (6), we want to expand the adiabatic eigenstates $|\psi^{\text{ad}}_n\rangle$ defined in Eq. (3) in the basis of diabatic states $|\psi^{\text{dia}}_m\rangle$ defined above. When doing so, one needs to keep in mind that the set of the diabatic states does not exactly represent an orthonormal basis. Furthermore, the space spanned by these basis states does not completely cover that of the adiabatic states. As a consequence, the matrix

$$C_{mn} = \langle \psi^{\text{dia}}_m | \psi^{\text{ad}}_n \rangle$$

(15)

is not unitary, albeit very close to it with the elements of the overlap matrix $S = C^T C$ being $S_{mn} \gtrsim 0.995$ and
\[S_{nm} \lesssim 0.0005 \text{ for } n \neq m. \] In order to orthogonalize the basis, we calculate \(S^{-1/2} \) and introduce the unitary matrix \(U \equiv S^{-1/2}C. \) With that, the diabatic potential energy matrix \(V_{\text{dia}} \) is given by
\[
V_{\text{dia}} = U W_{\text{rad}} U^T,
\]
where \(W_{\text{rad}} \) is a diagonal matrix containing the adiabatic energies \(\omega_{\text{ad},a} \) from Eq. (3). The diagonal elements of the matrix \(V_{\text{dia}} \) contain the energies of the corresponding diabatic states (which differ by some 10 \(\text{cm}^{-1} \) from those obtained from Eq. (13), since the set of diabatic states is not a complete basis), and the off-diagonal elements reflect the nonadiabatic couplings between them. Diagonalization of \(V_{\text{dia}} \) reproduces the adiabatic states by construction.

E. Vibrational Dynamics

Finally, we are in a position to propagate the time-dependent Schrödinger equation of the coupled vibrational dynamics of the high- and the low-frequency modes. This is done for two different models using two different levels of theory. First we consider a 3-state model including the fundamentals \([1,0,0]\) and \([0,1,0]\) of the two \(\text{OH} \) stretch vibrations and the closely resonant first overtone \([0,0,2]\) of the \(\text{HOH} \) bend vibration. Adopting the above introduced diabatic representation of these states, we will discuss curve crossings, vibrational energy redistribution and the associated vibrational spectra of this system.

To also study the subsequent vibrational relaxation into the \(\text{HOH} \) bend fundamental \([0,0,1]\) and the ground state \([0,0,0]\), we consider a 5-state model that additionally includes these two states, which are separated by \(\approx 1700 \text{ cm}^{-1} \) and \(\approx 3400 \text{ cm}^{-1} \) from the higher-lying states, respectively. While the diabatic representation is still appropriate for calculating the PESs of these states, it turns out that a diabatic picture describes only poorly the nonadiabatic couplings relevant for vibrational relaxation into the lower states, as other nonadiabatic coupling mechanisms take over due to the large energy spacing. In particular, the diabatic representation does not account for the \(Q \)-dependence of the minima \(\{q_i^{(0)}\} \) in the potential-energy expansion [Eq. (10)], which dominate the nonadiabatic couplings between the initially excited states and the \(\text{HOH}\)-bend fundamental as well as the ground state.[45] To avoid this problems, we perform a numerically exact propagation of the total vibrational wave function [Eq. (11)]. While being much more expensive (about a factor of 150) than the corresponding diabatic calculation, we thus obtain a numerically exact solution of the Schrödinger equation, which implicitly includes all nonadiabatic couplings.

For both models, we need to define the initial wave-function of the system at time \(t = 0 \). To this end, we first calculated the wave-function of the vibrational ground state \([0,0,0]\) by using an iterative Lanczos algorithm. In order to mimic a vertical Franck-Condon transition into the symmetric \(\text{OH}\)-stretch vibration, the ground state wave-function was then projected onto \(1/\sqrt{2}[\langle 1,0,0 \rangle + \langle 0,1,0 \rangle] \). Using that wave-function as initial condition, the time-dependent Schrödinger equation (2) or (7) was propagated, using a Chebychev scheme to calculate the required matrix-exponentials.[46]

III. RESULTS

A. Potential Energy Surfaces

1. Franck Condon Region

Let us first discuss the PESs of the 5-state model, that accounts for the ground state \([0,0,0]\), the two \(\text{OH} \) stretch fundamentals \([1,0,0]\) and \([0,1,0]\), and the the first and second \(\text{HOH} \) bend excitation \([0,0,1]\) and \([0,0,2]\). One-dimensional cuts of the diabatic PESs are shown in Fig. 2 with the corresponding other coordinates fixed at zero. The origins of coordinates \(Q_1, Q_2 \) and \(Q_3 \) correspond to the minima of the Born-Oppenheimer surface (which is not shown in Fig. 2). In the case of \(Q_1 \) and \(Q_3 \), these minima coincide with that of the \([0,0,0]\) ground state surface owing to symmetry, while the minimum of \(Q_2 \) is slightly shifted to \(Q_2 = -0.2 \) due to zero-point energy effects. In any case, the minima of the three coordinates represent the Franck Condon point.

Mode \(Q_1 \) is the strongest tuning coordinate,[47] that is, the bottom of the \([1,0,0]\) surface at \(3009 \text{ cm}^{-1} \) is displaced by \(Q_1=1.7 \) and lies \(375 \text{ cm}^{-1} \) below the vertical “Franck-Condon” energy of \(3384 \text{ cm}^{-1} \) at \(Q_1=0 \). The minimum is related to a structure which breaks the symmetry of the complex, and in which the excited \(\text{OH} \) stretch vibration forms a tighter hydrogen bond (see Fig. 2, left panel). When searching the minimum of the \([1,0,0]\) surface in all three dimensions, it is even a bit lower with \(2950 \text{ cm}^{-1} \) at \((Q_1, Q_2, Q_3) = (2.7, 1.2, -0.5) \).

The ground state surface is essentially flat along \(Q_1 \) for a pretty large range, which results from the fact that the positive curvature of the Born-Oppenheimer surface (not shown; its harmonic frequency is \(80 \text{ cm}^{-1} \)) is counterbalanced by the decreasing zero-point contribution of states \([1,0,0]\) and \([0,1,0]\) to the ground state surface. The \(\text{HOH}\)-bend fundamental \([0,0,1]\) and first overtone \([0,0,2]\) surfaces are mostly parallel to the ground state surface, hence the \(\text{HOH}\)-bend frequency is essentially independent of the molecular configuration of the cluster. No curve crossings exists between the \(\text{HOH}\)-bend fundamental \([0,0,1]\) and the \(\text{OH}\)-stretch states \([1,0,0]\) or \([0,1,0]\).
Owing to the large tunings of the OH-stretch modes as a function of \(Q_j \), a rich set of curve crossings appear for the states \(|1, 0, 0\rangle\), \(|0, 1, 0\rangle\), and \(|0, 0, 2\rangle\). For example, on the way from the Franck-Condon point to the minimum, the \(|1, 0, 0\rangle\) state crosses the HOH-bend overtone \(|0, 0, 2\rangle\) (see arrow in Fig. 2, top-left panel). The states are coupled with coupling constants that lie in a range of \(\approx \pm 50 \text{ cm}^{-1} \) (Fig. 2, lower panels), hence that crossing is in fact a weakly avoided crossing. But there are true conical intersections between these three states. In particular, the arrow in the middle panel of Fig. 2 marks a symmetry-allowed conical intersection between the HOH-bend overtone (which is a \(A_1 \) mode) and the asymmetric OH stretch vibration (\(B_2 \)). It extends into a one-dimensional conical intersection seam in \((Q_1, Q_3, Q_3)\)-space between the two lowest adiabatic states, i.e., between the HOH-bend overtone and the lower one of the OH-stretch modes, when breaking the symmetry of the complex along the \(Q_1 \) and/or \(Q_3 \) directions. The conical intersection seam has been calculated using a steepest decent algorithm \[48\] minimizing the adiabatic energy difference between both states. As initial values, random points in \((Q_1, Q_3, Q_3)\)-space were chosen and convergence was assumed once the energy difference dropped below 0.001 cm\(^{-1}\). To that end, the diabatic potential energy and coupling surfaces \(V^{\text{dia}} \), which are smooth functions in \(Q \), were calculated on an equidistant grid with \(\Delta Q = 0.2 \) and approximated in between by a 3rd-order interpolation. The results are shown in Fig. 3. Parts of the conical intersection seam are in fact below the Franck-Condon energy (see dotted line in Fig. 3a and blackish colors in both panels), and they are likely to be reached by a wave packet launched from the Franck-Condon point.

3. Hydrogen Bonded Isomers

When exploring the PESs further out, they become remarkably complex (see Fig. 4), since there are other hydrogen bonded isomers in addition to the \(C_{2h} \) structure. That is, there are two “backside” hydrogen-bonded forms \[24, 25\] at \((Q_1, Q_2, Q_3) = (15.6, 6.5, -17.5)\) and \((Q_1, Q_2, Q_3) = (16.6, 6.8, -10)\) with energies of 610 cm\(^{-1}\) and 660 cm\(^{-1}\), respectively, relative to the minimum of the ground state surface. In both cases, the energy drops below the Frank-Condon energy when exciting the corresponding OH-stretch vibration, so they are, in principle, energetically accessible after IR excitation. But the height of the barriers separating these minima from the
dependent population probabilities of the diabatic states. The propagation of this equation, we calculate the time-to-time-dependent Schrödinger equation (7). From this, we describe the system’s vibrational dynamics according to the diabatic representation of these states is used to describe the system’s vibrational dynamics according to the time-dependent Schrödinger equation (7). From the propagation of this equation, we calculate the time-dependent population probabilities of the diabatic states \(P_m(t) \) defined in Eq. (9), which are shown in Fig. 5a. The population of the HOH-bend overtone \(|0,0,2\rangle \) jumps to \(\approx 3-4\% \) within the first 60 fs in a first transfer step, and to \(\approx 12\% \) after 500 fs in a second step (see Fig. 5a, inset). That is, each time the wave-packet, illustrated by the expectation value of \(Q_2 \) (see Fig. 5b), passes by the conical intersection seam, a small fraction of the wave-packet is transferred from the initially excited OH stretch state \(|0,0,0\rangle \) to the optically dark HOH-bend overtone \(|0,0,2\rangle \), just like for curve crossings between electronic states. [49] On a longer timescale, the dynamics remains oscillatory with a major period of \(\approx 2-2.5 \) ps, but the population of the HOH-bend overtone never drops below the value after the first transfer step (3-4\%), hence, that step is irreversible. The coherent population transfer to the HOH-bend overtone \(|0,0,2\rangle \) can be considered the time-domain analog of a Fermi-resonance, which is commonly believed to play an important role in the vibrational dynamics of hydrogen-bonded systems. [50–53] While the coherent wave packet motion on diabatic PESs can be measured in time-resolved pump-probe experiments, [54, 55] the population dynamics in the adiabatic representation does not necessarily exhibit strongly oscillatory behavior.

Franck-Condon region is \(\gtrsim 1200 \) cm\(^{-1} \), hence tunneling through them will be small. A third minimum is found at \((Q_1, Q_2, Q_3) = (3.6, 4.8, -8.5) \), in which one of the OH-groups of the water is hydrogen bonded to the opposite oxygen atom of HCO\(_2^\cdot\). With 1020 cm\(^{-1} \) for the ground state surface, that minimum is somewhat higher in energy.

B. Vibrational Dynamics

1. Vibrational Dynamics of the 3-State Model

We first consider the above introduced 3-state model comprising the excited states \(|1,0,0\rangle, |0,1,0\rangle, \) and \(|0,0,2\rangle \). A diabatic representation of these states is used to describe the system’s vibrational dynamics according to the time-dependent Schrödinger equation (7). From the propagation of this equation, we calculate the time-dependent population probabilities of the diabatic states \(P_m(t) \) defined in Eq. (9), which are shown in Fig. 5a.
population \(P_{1,0,0} \) and \(P_{0,1,0} \) (red) and the OH-stretch fundamental \(|0,0,2\rangle \) (blue), following impulsive excitation of the symmetric OH-stretch vibration, \(1/\sqrt{2}(|1,0,0\rangle + |0,1,0\rangle) \). The populations of states \(|1,0,0\rangle \) and \(|0,1,0\rangle \) stay the same at all times, hence only the former is shown. (b) Time-dependent expectation value of \(Q_2 \). (c) Vibrational relaxation dynamics of the 5-state model, obtained from a numerically exact time propagation of the full product state wavefunction. Apart from the states shown in (a), also the populations of the HOH-bend fundamental \(|0,0,1\rangle \) (green) and the ground state \(|0,0,0\rangle \) (black) are depicted. The dotted line shows an exponential fit to the decay of \(|1,0,0\rangle \). In panel (a) and (c), the insets focus into the very early time evolution.

2. Vibrational Dynamics of the 5-State Model

We now consider the complete 5-state model, which additionally includes the HOH-bend fundamental \(|0,0,1\rangle \) and the ground state \(|0,0,0\rangle \) of the system. As explained in Sec. II E, for this case we need to employ a numerically exact propagation scheme, which implicitly includes all nonadiabatic couplings. As shown in Fig. 5c, the results are very similar with respect to the step-wise increase of the population of the HOH-bend overtone \(|0,0,2\rangle \) during the first picosecond, which indicates that the diabatic calculation of Fig. 5a indeed describes the nonadiabatic couplings within the 3-state model reasonably well. On a somewhat longer timescale, the population now cascades from the OH-stretch states \(1/\sqrt{2}(|1,0,0\rangle + |0,1,0\rangle) \) via the HOH-bend overtone \(|0,0,2\rangle \) and the fundamental \(|0,0,1\rangle \) into the ground state \(|0,0,0\rangle \). That is, the HOH-bend fundamental \(|0,0,1\rangle \) (see Fig. 5c, inset, green line) picks up population only after the first 60 fs jump of population into the HOH-bend overtone \(|0,0,2\rangle \) (blue line) has occurred. It is however only a very small amount of population in the HOH-bend overtone \(|0,0,2\rangle \) that is needed to funnel it into the HOH-bend overtone \(|0,0,1\rangle \), as the populations of both states rise in parallel on a somewhat longer timescale. The population rise of the ground state \(|0,0,2\rangle \) (black line), in turn, has a larger lag time and requires population to first accumulate in the HOH-bend overtone \(|0,0,1\rangle \).

In contrast to the dynamics between the OH stretch mode and the HOH-bend overtone, relaxation proceeds in essentially an exponential –rather than a coherent– manner. Note that no empirical relaxation term or bath has been included in the simulation; the system is modeled as a closed quantum system. A bi-exponential fit of the decay of the OH-stretch relaxation (considering data up to 32.8 ps, not all of which are shown in Fig. 5c) reveals time constants of 0.5 ps (amplitude 0.15) and 3.8 ps (amplitude 0.22), as well as a constant offset at 0.13. The timescales are quite typical for the relaxation of a vibrational mode.\[13–15\]

Fig. 6 shows the time evolution of kinetic energy of the low-frequency vibrations in the \(|0,0,0\rangle \) ground state. The black curve shows the total kinetic energy, the green, blue and red curves the kinetic energy subdivided into the three low frequency modes \(Q_1, Q_2, \) and \(Q_3 \), respectively.

FIG. 5: (a) Vibrational relaxation dynamics of the 3-state model calculated in a diabatic representation. Shown are the time-dependent population probability of the OH-stretch fundamental \(|1,0,0\rangle \), red and the HOH-bend overtone \(|0,0,2\rangle \), blue, following impulsive excitation of the symmetric OH-stretch vibration, \(1/\sqrt{2}(|1,0,0\rangle + |0,1,0\rangle) \). The populations of states \(|1,0,0\rangle \) and \(|0,1,0\rangle \) stay the same at all times, hence only the former is shown. (b) Time-dependent expectation value of \(Q_2 \). (c) Vibrational relaxation dynamics of the 5-state model, obtained from a numerically exact time propagation of the full product state wavefunction. Apart from the states shown in (a), also the populations of the HOH-bend fundamental \(|0,0,1\rangle \), green and the ground state \(|0,0,0\rangle \), black) are depicted. The dotted line shows an exponential fit to the decay of \(|1,0,0\rangle \). In panel (a) and (c), the insets focus into the very early time evolution.

FIG. 6: Time evolution of kinetic energy of the low-frequency vibrations in the \(|0,0,0\rangle \) ground state. The black curve shows the total kinetic energy, the green, blue and red curves the kinetic energy subdivided into the three low frequency modes \(Q_1, Q_2, \) and \(Q_3 \), respectively.
C. Calculation of Spectra

1. Absorption Spectrum

From the time-dependent wave-function \(|\Psi(t)\rangle\), absorption spectra were calculated via

\[
A(\omega) \propto \int_0^{T_{\text{max}}} dt \, e^{-i\omega t} D(t) \langle \Psi(0) | \Psi(t) \rangle,
\]

where the Fourier transformation was extended up to \(T_{\text{max}} = 32.8 \text{ ps}\) with time-step 2 fs and apodized by the damping function \(D(t)\). To reveal the details of the eigenstate structure of the spectrum, we used a Gaussian function for \(D(t)\) resulting in a spectral width of 1 cm\(^{-1}\) FWHM. Figure 7a shows the result obtained from a diabatic time-propagation in the absence of the coupling between the OH-stretch modes and the HOH-bend overtone. Below 3350 cm\(^{-1}\), there is a single Franck-Condon progression with a spacing of 75 cm\(^{-1}\); very close to the experimental value of 70 cm\(^{-1}\) (Fig. 8c) [26]. It corresponds to a coherent wave-packet motion along \(Q_1\) after excitation of the OH-stretch state. Above 3350 cm\(^{-1}\), which roughly coincides with the curve crossing between the two OH-stretch PESs (Fig. 2, left panel), each Franck-Condon peak splits into two states. The spectrum of Fig. 7a is qualitatively the same as that of Ref. 18 for CH\(_3\)NO\(_2\)·H\(_2\)O and CH\(_3\)CO\(_2\)·H\(_2\)O, or that of Ref. 22 for NO\(_3\)·H\(_2\)O, both of which treated the problem on the level of a cubic expansion of the Born-Oppenheimer PES.

Turning on the coupling between the OH-stretch states \(|1, 0, 0\rangle\) and \(|0, 1, 0\rangle\) and the HOH-bend overtone \(|0, 0, 2\rangle\), the resulting spectrum is shown in Fig. 7b. Comparison to Fig. 7a tests the effect of that coupling, for which we have seen that it causes significant transfer of population (Fig. 5a). We find that the effect of that Fermi resonance on the spectral response is in fact relatively small. In essence, some low-frequency states on the PES of the HOH-bend overtone mix in, which are marked by arrows in Fig. 7b. That is, although the initial decay of the population into the HOH bend overtone through the conical intersection is ultrafast (60 fs) and irreversible (Fig. 5a, inset), it does not result in significant line broadening. This is because the wave packet energy evolves energetically rather close to the bottom of the various PESs, where the density of states is still small and discrete.

Figure 7c shows the absorption spectrum obtained from the numerically exact time-propagation, which includes relaxation into the HOH-bend fundamental \(|0, 0, 1\rangle\) as well as the ground state \(|0, 0, 0\rangle\). Apart of a small frequency shift of 30 cm\(^{-1}\) (which we attribute to the fact that the set of diabatic states is not a complete basis, see Eq. (15)), the overall pattern of the spectrum is similar as in Fig. 7b. Due to the nonadiabatic coupling of the initially excited vibrations to the lower states \(|0, 0, 1\rangle\) and \(|0, 0, 0\rangle\), however, we notice the onset of intensity-borrowing lines, some of which are partially resolved (in particular for the lowest frequency band), and others are not due to our limited spectral resolution of 1 cm\(^{-1}\). As a consequence, various peaks appear to be a bit wider in terms of their FWHM and correspondingly lower in peak intensity (all spectra in Fig. 7 are normalized to the same area, and have been apodized by the same Gaussian function). Furthermore, the bands start to develop what looks like Lorentzian wings. The faster relaxation time (0.5 ps) extracted from the decay of the \(|1, 0, 0\rangle\) state in Fig. 5 corresponds to a Lorentzian width of 10 cm\(^{-1}\) (FWHM), which is in reasonable agreement with the energy range within which intensity-borrowing substates are observed. Nonetheless, all three spectra in Fig. 7 appear quite similar, in contrast to the substantially different relaxation dynamics of the various models in Fig. 5, which might be more directly observed in a time-resolved experiment.

Each absorption band in the 3-state model (Fig. 7b) represents a single eigenstate of the corresponding Hamiltonian. Along the lines of Ref. 56, these states can be viewed as “zero-order bright” states that couple to a quasi-continuum of quasi-resonant dark states from the HOH bend fundamental \(|0, 0, 1\rangle\) and the ground state \(|0, 0, 0\rangle\) PESs, once the latter are added in the 5-state model. The energy width of coupled dark states around each zero-order bright state reflects the nonadiabatic coupling strength. The dark states that mix in are highly excited with respect to the low-frequency coordinates, as they originate from lower excitations with respect to the high frequency modes. As such, these dark states lie above the barriers separating the various hydrogen bonded isomers (see Fig. 4). The relevant \(Q\)-space is large and the density of states thus high, constituting a quasi-continuum of states. Furthermore, the HOH bend fundamental and ground state PESs are extremely anharmonic in this energy regime, thus randomizing the energy spectrum and rendering the relaxation process exponential.

2. Ar-tag spectrum

Johnson et al. [18, 23–26] did not measure the absorption spectrum [Eq. (17)] directly, but an Ar-“tag” spectrum. In such an action spectrum, the absorbed light “heats” up the complex, leading to a dissociation of an Ar-atom that is very weakly bound to the complex, which in turn causes a change of mass of the complex that is eventually detected. Assuming that the Ar-atom dissociates from a fully thermalized complex, the Ar-“tag” spectrum reflects the total energy absorbed by the complex, and is therefore given by the IR absorption spectrum. However, it has been observed for similar complexes that the Ar atom typically dissociates on a 100 ps to 1 ns timescale [57, 58], and the assumption of full thermalization after such a short time is a bit questionable, given the small size of these complexes.

To model the Ar-tag spectrum in a more direct way, we therefore consider the kinetic energy content of the low-
FIG. 7: Absorption spectrum after impulsive excitation of the symmetric OH-stretch vibration, (a) in a diabatic representation when switching off the coupling between the OH-stretch modes and the HOH-bend overtone, (b) in a diabatic representation in which that coupling is switched on, and (c) from the numerically exact time-propagation which includes also nonadiabatic couplings to the HOH-bend fundamental as well as the ground state (solid line). All three spectra are normalized to the same area.

frequency modes, which account for the “heating” of the complex. Hence we define the Ar-tag spectrum $I_{\text{AT}}(\omega)$ as the expectation value of the kinetic energy T_Q after light absorption at long times as

$$I_{\text{AT}}(\omega) = \lim_{t \to \infty} \langle \mathcal{H}_Q(t) | \Psi(0) \rangle,$$ \hspace{1cm} (18)

where

$$\Psi(0) = i \frac{\hbar}{i} \langle \varphi^{\text{dia}}_0 | \int_0^t dt' e^{-i\omega t'} D(t') e^{-iH(t-t')/\hbar} | \Psi(t') \rangle.$$

$$\Psi(0) = i \frac{\hbar}{i} \langle \varphi^{\text{dia}}_0 | \int_0^t dt' e^{-i\omega t'} D(t') e^{-iH(t-t')/\hbar} | \Psi(t') \rangle.$$ \hspace{1cm} (19)

denotes the wave function obtained from time-dependent perturbation theory in first order. Here the term $e^{-i\omega t'}$ describes the cw laser excitation of the system, while the propagator $e^{-iH(t-t')/\hbar}$ accounts for the nonadiabatic relaxation into the the ground state $|0,0,0\rangle$, which in turn affects the heating of the molecule that is measured in the Ar-tag action spectrum. For computational convenience, we projected the total wave-function on the diabatic ground state $|\varphi^{\text{dia}}_0\rangle$, which is expected to receive the highest amount of kinetic energy and hence will cause the largest effects. According to its definition in Eq. (19), the Ar-tag experiment is described as an excitation spectrum rather than by an absorption spectrum. For the practical computation of $I_{\text{AT}}(\omega)$ via a Fourier transformation, we rewrite Eq. (19) as

$$\Psi(0) = i \frac{\hbar}{i} \langle \varphi^{\text{dia}}_0 | \int_0^T dt' e^{i\omega t'} D(t',T) | \Psi(t') \rangle.$$ \hspace{1cm} (20)

Figure 8a compares the resulting Ar-tag spectrum obtained for the 5-state model to the corresponding absorption spectrum, using again a Gaussian damping function that results in a spectral width of 1 cm$^{-1}$ FWHM. The overall features of both spectra are quite similar, which might reflect the fact that energy indeed does reach an essentially thermalized state right after relaxation, as already seen by the equipartitioning of the kinetic energy (Fig. 6). In detail, the intensities of the individual substates vary somewhat, which is associated with the coupling of the corresponding state to the ground state, i.e., its capability to dump energy into low-frequency degrees of freedoms. Overall speaking, higher frequency states get tentatively more intensity in the Ar-tag spectrum as compared to the absorption spectrum.

However we find that neither the absorption spectrum nor the Ar-tag spectrum of the 5-state model in Fig. 8a reveal the broad background observed in the experiments of Johnson and coworkers (Fig. 8c).[26] To mimic the experimental spectral width, we may alternatively use an exponential damping function $D(t) = e^{-t/T_2}$ for both spectra, where $1/T_2 = 1/2T_1 + 1/T_2^*$ denotes the total dephasing rate that can consist of either pure dephasing...
FIG. 8: Ar-tag spectrum [Eq. (20), red] and absorption spectrum [Eq. (17), black, same as in Fig. 7c], as obtained for the 5-state model of HCO_2^--H_2O. In panel (a) a Gaussian apodization function resulting in a spectral width of 1 cm$^{-1}$ FWHM was employed, in (b) a exponential damping function with a decay time of $T_2 = 0.4$ ps, resulting in a Lorentzian lineshape with a spectral width of 25 cm$^{-1}$ FWHM. In both cases, spectra are normalized to the same area. (c) Experimental spectrum taken from Ref. [26].

The Lorentzian wings of the individual peaks merge to form a background (Fig. 8b) that qualitatively matches the experimental result (Fig. 8c).[26]

We can think of several reasons that could give rise to such an additional broadening. First, additional broadening can be caused by the remaining six vibrations of HCO_2^--H_2O that are not included in the present model. These “spectator modes” may add additional weak line progressions, which might become a quasi-continuum when they are dense enough.[59] This possibility is supported by the observation that the broad background becomes more pronounced for complexes of water with larger molecules (CH_3NO_2^- or CH_3CO_2^-),[23] in which case the complex consist of more degrees of freedom and at the same time is of lower symmetry. The effect of these additional vibrations could in principle be studied by using a simple model ansatz for the PESs and an advanced quantum-dynamical method such as MCTDH.[60] Second, one needs to keep in mind that the experimental system actually is not the isolated complex studied here, but contains a number of Ar-atoms needed for the Ar-tag spectroscopy. These Ar atoms are weakly bound through van der Waals interactions, i.e., modes of even lower frequency, that might constitute a “bath” that adds dephasing. In that regard, it is important to note that bands other than the OH stretch vibration, e.g., the CH stretch vibration of HCO_2^-, are significantly narrower. The larger width of the OH modes can be caused by their larger anharmonicity that makes them more susceptible to dephasing.[61] Finally also the spectral resolution of the experimental setup may contribute to the total linewidth.

IV. CONCLUDING REMARKS

Based on extensive ab initio calculations, we have constructed a model of the vibrational dynamics of HCO_2^--H_2O that comprises three high-frequency intramolecular vibrations and three low-frequency intermolecular vibrations of the complex (Fig. 1). To elucidate the involved relaxation dynamics following the excitation of the OH-stretch vibration, we have employed an adiabatic ansatz separating the two sets of modes. This results in a 5-state model that includes PESs of the ground state $|0,0,0\rangle$, the fundamentals $|0,0,1\rangle$, $|1,0,0\rangle$, and $|0,1,0\rangle$ of the HOH bend and the two OH stretch vibrations, and the first HOH bend overtone $|0,0,2\rangle$. To compare the simulation results to the experiments of Johnson et al.[26], we calculated the spectral signatures of the vibrational dynamics on these PESs, both as absorption spectrum and as a mimic of an Ar-tag spectrum. In semiquantitative agreement with the experi-
ment, these spectra are dominated by a single “Franck-Condon” progression of mode Q_1.

Studying the PESs of these states along the three low-frequency modes, we have identified a vibrational conical intersections seam between OH stretch states $|1, 0, 0\rangle$ and $|0, 0, 2\rangle$ and the closely resonant HOH bend state $|0, 0, 1\rangle$ (Fig. 2 and Fig. 3). The conical intersection affects an ultrafast (60 fs) and irreversible initial decay of the OH stretch population and gives rise to coherent wave packet motion on the coupled PESs (Fig. 5). In direct analogy to ultrafast photophysical or photochemical reactions in the electronic case, the adiabatic ansatz facilitates the interpretation of coherent population transfer processes through crossing PESs.[49, 55]

On the other hand, when including the HOH bend fundamental $|0, 0, 1\rangle$ and the ground state $|0, 0, 0\rangle$ into the model, we find no curve crossings between these states and the energetically well separated excited states (Fig. 2). Population decay into these states occurs in an incoherent manner, that is, it hardly exhibits oscillations and is well described by exponential functions (Fig. 5). Hence, the mechanism of the subsequent population relaxation from the excited states into the lower-lying states in the 5-state model is distinctively different from the initial coherent population transfer in the 3-state model. The electronic analog of that relaxation mechanism is radiationless internal conversion in the weak coupling limit, which can be described in a perturbative manner, thus leading to a Golden-Rule-type description. [62] Considering, e.g., the $|1, 0, 0\rangle \rightarrow |0, 0, 1\rangle$ relaxation process, this means that a manifold of many highly excited vibrational states in the $|0, 0, 1\rangle$ state couple quasi-resonantly to comparatively few low-lying states in the $|1, 0, 0\rangle$ state.

In contrast to the electronic case, however, the timescale of the weak coupling relaxation $|1, 0, 0\rangle \rightarrow |0, 0, 1\rangle$ is only insignificantly slower than the curve crossing relaxation $|1, 0, 0\rangle \rightarrow |0, 0, 2\rangle$. In the electronic case, downhill relaxation through a conical intersection can be as fast as 10 fs, [63] while it is typically larger than the fluorescence lifetime (i.e. $\gtrsim 10$ ns) when no curve crossings exist. In other words, the variability of electronic relaxation timescales exceeds six orders of magnitudes, while vibrational relaxation timescales cover only about one order of magnitude. This observation suggests that the adiabatic approximation may be relatively poor in the vibrational case, in the sense that essentially no decay should occur in the case of well-separated non-crossing adiabatic states if the approximation were good.

This finding seems surprising in the light of the fact that the separation of timescales between vibrational and electronic degrees of freedom (typically a factor of ten) is quite similar to the timescale separation between inter- and intramolecular degrees of freedom. It is that timescale separation, which is often believed to be the condition for the adiabatic approximation to be good. However, a closer inspection of the adiabatic Schrödinger equation (5) reveals that it is really the mass difference between light and heavy particles which counts, rather than the timescale separation per se (the timescale separation is only a consequence of the different masses). Adopting atomic units, all masses of a vibronic Hamiltonian are measured in units of the electron mass m_e. As a consequence, the kinetic energy of an electron is given by $-\frac{1}{2}\nabla_e^2$, while the kinetic energy of a nuclei is given by $-\frac{1}{2}\nabla_n^2$, where $M = m_n/m_e$ is nucleic mass in units of m_e. Since the nonadiabatic coupling operator Λ_{nm} in Eq. (5) can be written as [55]

$$\Lambda_{nm}(Q) = -\int dq \psi_n^{ad}(q; Q)[T_Q, \psi_m^{ad}(q; Q)]$$

the vibronic coupling is relatively small due to the factor m_e/m_n which is typically between 10^{-4} and 10^{-5}. In the vibrational case, on the other hand, the corresponding ratio m_{HF}/m_{LF} between the masses of the high- and low-frequency modes is typically around 10^{-1}, that is, we expect in general larger nonadiabatic couplings even without any curve crossings.

The timescale of a particular degree of freedom scales as $\sqrt{m/k}$ (assuming a harmonic picture with k being the force constant), hence it is not only the mass ratio, but also the ratio in steepness of potentials that determines the timescale separation. In the electronic case with a mass ratio of 10^{-4} and 10^{-5}, the potentials are such that they actually reduce the timescale separation from what would expected from a simple \sqrt{m} dependence. In contrast in the vibrational case, both the relatively small mass ratio and the potentials act in concert—intramolecular forces– to reveal about the same timescale separation as in the electronic case.

In conclusion, vibrational conical intersections, which have been shown to indeed exist for a variety of molecular systems (this work as well as inRefs. [28, 29, 37, 38]), present a less distinct pathway for energy relaxation as in the electronic case. Generally speaking, the interpretation of vibrational relaxation processes in terms of adiabatic PESs is therefore less straightforward than in the case of electronic relaxation. Nonetheless, the intuitive and appealing picture might be helpful, e.g., to study vibrational energy relaxation in liquids that involve a large number of quasi-resonant high-frequency modes.

Acknowledgments

We are grateful to Mark Johnson for insightful discussions on the topic of the paper, as well as for making the experimental spectrum (Fig. 8c) available to us for a direct comparison. The work has been supported in part by the Swiss National Science Foundation (SNF) through the NCCR MUST.
[22] Q_2 represents a linear translation with a kinetic energy operator T Q_2 \propto \partial^2 / \partial Q_2^2, whose DVR representation is given by Eq. (A6) of Ref. 41. On the other hand, Q_1 and Q_2 are linear combinations of rotations of the two molecules (Fig. 1). However, since we consider only 1D rotations due to restricting the problem to modes that stay in the plane of the complex, the corresponding kinetic energy operator remains simple with \alpha = \partial^2 / \partial \alpha_i^2 (where \alpha_i are the rotation angles of the two molecules). In principle, a DVR exists for that operator that takes its periodicity into account [41]. Since we however combine two angles with different scaling factors into one mode (so that their linearisations for small displacements reveal the corresponding normal mode coordinates), the overall coordinates Q_i and Q_j are no longer periodic. We therefore use Eq. (A6) of Ref. 41 for the angle coordinates as well. Since the maximum rotation in the considered region is still significant smaller than 2\pi, that approximation appears to be acceptable.
[25] Apart from convergence issues, it is in fact irrelevant for both the adiabatic and the diabatic representation whether or not the minimum energy positions (q_{0(0)}^{(0)}) in Eq. (10) are considered (discarding them actually leads to slightly better convergence with respect to basis size). On the other hand, for the numerically exact
time-propagation, it is mandatory to expand Eq. (10) and to consider the minimum energy positions explicitly. We have found that it is the variation of the minimum energy positions \(q^{(0)}_{i} \) as a function of inter-molecular coordinates \(Q \) that dominates the non-adiabatic couplings between the excited states to the bend fundamental and the ground state.