Header

UZH-Logo

Maintenance Infos

Influence of migratory ungulate management on competitive interactions with resident species in a protected area


Anderwald, Pia; Herfindal, Ivar; Haller, Rudolf M; Risch, Anita C; Schütz, Martin; Schweiger, Anna K; Filli, Flurin (2015). Influence of migratory ungulate management on competitive interactions with resident species in a protected area. Ecosphere, 6(11):art228.

Abstract

Migratory animals can represent links between protected and unprotected parts of their home ranges. Management of such species outside a conservation area can influence species interactions inside the protected zone. This may result in unintended effects on populations of conservation concern even if they spend their entire life cycle within the protected area. We examined interspecific interactions between three species of large herbivores in the absence of mammalian predators in the Swiss National Park, and assessed whether the population size of the migratory red deer (Cervus elaphus) that is harvested outside the park in autumn and winter affected the two resident species, chamois (Rupicapra rupicapra) and ibex (Capra ibex). Dietary overlap was high between the three species while they co-occurred in the park, suggesting potential for interspecific resource competition. Particularly the habitat use of chamois was affected by red deer population size, with decreased use of meadows and forest with increasing red deer numbers, and increased use of areas covered by scree. Ibex habitat use was affected by the population sizes of all three species, but effects differed between species and season. Moreover, horn growth in young chamois and the population growth rate of ibex were negatively related to red deer numbers. The results suggest that high population size of red deer negatively affects ibex and chamois through the migratory behavior of red deer between protected and non-protected areas. Effective management of a migratory ungulate species outside the protected part of its range, taking account of its ecology and natural behavior, can thus have positive effects on populations within a protected area by alleviating interspecific competition. However, this requires co-operation between policy makers and hunters, acceptance by local people, as well as flexibility to deviate from traditional management regimes such as supplementary feeding to tie animals to certain areas.

Abstract

Migratory animals can represent links between protected and unprotected parts of their home ranges. Management of such species outside a conservation area can influence species interactions inside the protected zone. This may result in unintended effects on populations of conservation concern even if they spend their entire life cycle within the protected area. We examined interspecific interactions between three species of large herbivores in the absence of mammalian predators in the Swiss National Park, and assessed whether the population size of the migratory red deer (Cervus elaphus) that is harvested outside the park in autumn and winter affected the two resident species, chamois (Rupicapra rupicapra) and ibex (Capra ibex). Dietary overlap was high between the three species while they co-occurred in the park, suggesting potential for interspecific resource competition. Particularly the habitat use of chamois was affected by red deer population size, with decreased use of meadows and forest with increasing red deer numbers, and increased use of areas covered by scree. Ibex habitat use was affected by the population sizes of all three species, but effects differed between species and season. Moreover, horn growth in young chamois and the population growth rate of ibex were negatively related to red deer numbers. The results suggest that high population size of red deer negatively affects ibex and chamois through the migratory behavior of red deer between protected and non-protected areas. Effective management of a migratory ungulate species outside the protected part of its range, taking account of its ecology and natural behavior, can thus have positive effects on populations within a protected area by alleviating interspecific competition. However, this requires co-operation between policy makers and hunters, acceptance by local people, as well as flexibility to deviate from traditional management regimes such as supplementary feeding to tie animals to certain areas.

Statistics

Citations

2 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

43 downloads since deposited on 21 Dec 2015
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:21 Dec 2015 09:04
Last Modified:28 Apr 2017 02:08
Publisher:Ecological Society of America
ISSN:2150-8925
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1890/es15-00365.1

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations