Header

UZH-Logo

Maintenance Infos

Joining a discrete radiative transfer model and a kernel retrieval algorithm for soil moisture estimation from SAR data


Stamenkovic, Jelena; Ferrazzoli, Paolo; Guerriero, Leila; Tuia, Devis; Thiran, Jean-Philippe (2015). Joining a discrete radiative transfer model and a kernel retrieval algorithm for soil moisture estimation from SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7):3463-3475.

Abstract

This paper investigates the problem of retrieving soil moisture under crops using Synthetic Aperture Radar (SAR) data. First, we simulated the time series of L-band SAR signals over agricultural fields using a discrete radiative transfer model (RTM). Full growth cycles of winter wheat, maize, and sugar beet fields sampled during the AgriSAR2006 (Agricultural bio/geophysical retrievals from frequent repeat pass SAR and optical imaging) field campaign were considered. A generally good correspondence between the simulated crop backscattering coefficients and those measured by the airborne L-band E-SAR (Experimental-SAR) system was observed with an average rootmean-square error (RMSE) of 2.32 dB. The highest RMSE of 3.63 dB was obtained by the RTM simulations of HV polarized signals in the wheat field, whereas the smallest RMSE of 1.63 dB is achieved in RTM simulations of HV backscattering coefficients in the field of sugar beet. All discrepancies were critically discussed and interpreted. Then, soil moisture was estimated using a nonlinear inversion technique, support vector regression (ν-SVR). The model was trained with the backscatter model simulations obtained by the RTM. For all fields considered, the RMSE of the predicted soil moisture was smaller than 5.5% Vol. and the corresponding correlation coefficient (r) was equal to or higher than 0.71.

Abstract

This paper investigates the problem of retrieving soil moisture under crops using Synthetic Aperture Radar (SAR) data. First, we simulated the time series of L-band SAR signals over agricultural fields using a discrete radiative transfer model (RTM). Full growth cycles of winter wheat, maize, and sugar beet fields sampled during the AgriSAR2006 (Agricultural bio/geophysical retrievals from frequent repeat pass SAR and optical imaging) field campaign were considered. A generally good correspondence between the simulated crop backscattering coefficients and those measured by the airborne L-band E-SAR (Experimental-SAR) system was observed with an average rootmean-square error (RMSE) of 2.32 dB. The highest RMSE of 3.63 dB was obtained by the RTM simulations of HV polarized signals in the wheat field, whereas the smallest RMSE of 1.63 dB is achieved in RTM simulations of HV backscattering coefficients in the field of sugar beet. All discrepancies were critically discussed and interpreted. Then, soil moisture was estimated using a nonlinear inversion technique, support vector regression (ν-SVR). The model was trained with the backscatter model simulations obtained by the RTM. For all fields considered, the RMSE of the predicted soil moisture was smaller than 5.5% Vol. and the corresponding correlation coefficient (r) was equal to or higher than 0.71.

Statistics

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 21 Dec 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:21 Dec 2015 09:15
Last Modified:08 Dec 2017 16:09
Publisher:Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Publisher DOI:https://doi.org/10.1109/jstars.2015.2432854

Download