Header

UZH-Logo

Maintenance Infos

Canonical wnt signaling is required for commissural axon guidance


Avilés, Evelyn C; Stoeckli, Esther T (2016). Canonical wnt signaling is required for commissural axon guidance. Developmental Neurobiology, 76(2):190-208.

Abstract

Morphogens have been identified as guidance cues for postcrossing commissural axons in the spinal cord. Shh has a dual effect on postcrossing commissural axons: a direct repellent effect mediated by Hhip as a receptor, and an indirect effect by shaping a Wnt activity gradient. Wnts were shown to be attractants for postcrossing commissural axons in both chicken and mouse embryos. In mouse, the effects of Wnts on axon guidance were concluded to depend on the planar cell polarity (PCP) pathway. Canonical Wnt signaling was excluded based on the absence of axon guidance defects in mice lacking Lrp6 which is an obligatory coreceptor for Fzd in canonical Wnt signaling. In the loss-of-function studies reported here, we confirmed a role for the PCP pathway in postcrossing commissural axon guidance also in the chicken embryo. However, taking advantage of the precise temporal control of gene silencing provided by in ovo RNAi, we demonstrate that canonical Wnt signaling is also required for proper guidance of postcrossing commissural axons in the developing spinal cord. Thus, axon guidance does not seem to depend on any one of the classical Wnt signaling pathways but rather involve a network of Wnt receptors and downstream components. © 2015 Wiley Periodicals, Inc. Develop Neurobiol, 2015.

Abstract

Morphogens have been identified as guidance cues for postcrossing commissural axons in the spinal cord. Shh has a dual effect on postcrossing commissural axons: a direct repellent effect mediated by Hhip as a receptor, and an indirect effect by shaping a Wnt activity gradient. Wnts were shown to be attractants for postcrossing commissural axons in both chicken and mouse embryos. In mouse, the effects of Wnts on axon guidance were concluded to depend on the planar cell polarity (PCP) pathway. Canonical Wnt signaling was excluded based on the absence of axon guidance defects in mice lacking Lrp6 which is an obligatory coreceptor for Fzd in canonical Wnt signaling. In the loss-of-function studies reported here, we confirmed a role for the PCP pathway in postcrossing commissural axon guidance also in the chicken embryo. However, taking advantage of the precise temporal control of gene silencing provided by in ovo RNAi, we demonstrate that canonical Wnt signaling is also required for proper guidance of postcrossing commissural axons in the developing spinal cord. Thus, axon guidance does not seem to depend on any one of the classical Wnt signaling pathways but rather involve a network of Wnt receptors and downstream components. © 2015 Wiley Periodicals, Inc. Develop Neurobiol, 2015.

Statistics

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 23 Dec 2015
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2016
Deposited On:23 Dec 2015 10:24
Last Modified:04 Aug 2017 14:07
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1932-8451
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/dneu.22307
PubMed ID:26014644

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations