Header

UZH-Logo

Maintenance Infos

Understanding angular effects in VHR imagery and their significance for urban land-cover model portability: A study of two multi-angle in-track image sequences


Matasci, Giona; Longbotham, Nathan; Pacifici, Fabio; Kanevski, Mikhail; Tuia, Devis (2015). Understanding angular effects in VHR imagery and their significance for urban land-cover model portability: A study of two multi-angle in-track image sequences. ISPRS Journal of Photogrammetry and Remote Sensing, 107:99-111.

Abstract

This paper investigates the angular effects causing spectral distortions in multi-angle remote sensing imagery. We study two WorldView-2 multispectral in-track sequences acquired over the cities of Atlanta, USA, and Rio de Janeiro, Brazil, consisting of 13 and 20 co-located images, respectively. The sequences possess off-nadir acquisition angles up to 47.5˚ and bear markedly different sun-satellite configurations with respect to each other. Both scenes comprise classic urban structures such as buildings of different size, road networks, and parks. First, we quantify the degree of distortion affecting the sequences by means of a non-linear measure of distance between probability distributions, the Maximum Mean Discrepancy. Second, we assess the ability of a classification model trained on an image acquired at a certain view angle to predict the land-cover of all the other images in the sequence. The portability across the sequence is investigated for supervised classifiers of different nature by analyzing the evolution of the classification accuracy with respect to the off-nadir look angle. For both datasets, the effectiveness of physically- and statistically-based normalization methods in obtaining angle-invariant data spaces is compared and synergies are discussed. The empirical results indicate that, after a suitable normalization (histogram matching, atmospheric compensation), the loss in classification accuracy when using a model trained on the near-nadir image to classify the most off-nadir acquisitions can be reduced to as little as 0.06 (Atlanta) or 0.03 (Rio de Janeiro) Kappa points when using a SVM classifier.

Abstract

This paper investigates the angular effects causing spectral distortions in multi-angle remote sensing imagery. We study two WorldView-2 multispectral in-track sequences acquired over the cities of Atlanta, USA, and Rio de Janeiro, Brazil, consisting of 13 and 20 co-located images, respectively. The sequences possess off-nadir acquisition angles up to 47.5˚ and bear markedly different sun-satellite configurations with respect to each other. Both scenes comprise classic urban structures such as buildings of different size, road networks, and parks. First, we quantify the degree of distortion affecting the sequences by means of a non-linear measure of distance between probability distributions, the Maximum Mean Discrepancy. Second, we assess the ability of a classification model trained on an image acquired at a certain view angle to predict the land-cover of all the other images in the sequence. The portability across the sequence is investigated for supervised classifiers of different nature by analyzing the evolution of the classification accuracy with respect to the off-nadir look angle. For both datasets, the effectiveness of physically- and statistically-based normalization methods in obtaining angle-invariant data spaces is compared and synergies are discussed. The empirical results indicate that, after a suitable normalization (histogram matching, atmospheric compensation), the loss in classification accuracy when using a model trained on the near-nadir image to classify the most off-nadir acquisitions can be reduced to as little as 0.06 (Atlanta) or 0.03 (Rio de Janeiro) Kappa points when using a SVM classifier.

Statistics

Citations

6 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 23 Dec 2015
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2015
Deposited On:23 Dec 2015 10:12
Last Modified:08 Dec 2017 16:17
Publisher:Elsevier
ISSN:0924-2716
Publisher DOI:https://doi.org/10.1016/j.isprsjprs.2015.05.004

Download