Header

UZH-Logo

Maintenance Infos

Phylogenetic distance among beneficiary species in a cushion plant species explains interaction outcome


Pistón, Nuria; Armas, Cristina; Schöb, Christian; Macek, Petr; Pugnaire, Francisco I (2015). Phylogenetic distance among beneficiary species in a cushion plant species explains interaction outcome. Oikos, 124(10):1354-1359.

Abstract

Determining which drivers lead to a specific species assemblage is a central issue in community ecology. Although many processes are involved, plant–plant interactions are among the most important. The phylogenetic limiting similarity hypothesis states that closely related species tend to compete stronger than distantly related species, although evidence is inconclusive. We used ecological and phylogenetic data on alpine plant communities along an environmental severity gradient to assess the importance of phylogenetic relatedness in affecting the interaction between cushion plants and the whole community, and how these interactions may affect community assemblage and diversity. We first measured species richness and individual biomass of species growing within and outside the nurse cushion species, Arenaria tetraquetra. We then assembled the phylogenetic tree of species present in both communities and calculated the phylogenetic distance between the cushion species and its beneficiary species, as well as the phylogenetic community structure. We also estimated changes in species richness at the local level due to the presence of cushions. The effects of cushions on closely related species changed from negative to positive as environmental conditions became more severe, while the interaction with distantly related species did not change along the environmental gradient. Overall, we found an environmental context-dependence in patterns of phylogenetic similarity, as the interaction outcome between nurses and their close and distantly-related species showed an opposite pattern with environmental severity.

Abstract

Determining which drivers lead to a specific species assemblage is a central issue in community ecology. Although many processes are involved, plant–plant interactions are among the most important. The phylogenetic limiting similarity hypothesis states that closely related species tend to compete stronger than distantly related species, although evidence is inconclusive. We used ecological and phylogenetic data on alpine plant communities along an environmental severity gradient to assess the importance of phylogenetic relatedness in affecting the interaction between cushion plants and the whole community, and how these interactions may affect community assemblage and diversity. We first measured species richness and individual biomass of species growing within and outside the nurse cushion species, Arenaria tetraquetra. We then assembled the phylogenetic tree of species present in both communities and calculated the phylogenetic distance between the cushion species and its beneficiary species, as well as the phylogenetic community structure. We also estimated changes in species richness at the local level due to the presence of cushions. The effects of cushions on closely related species changed from negative to positive as environmental conditions became more severe, while the interaction with distantly related species did not change along the environmental gradient. Overall, we found an environmental context-dependence in patterns of phylogenetic similarity, as the interaction outcome between nurses and their close and distantly-related species showed an opposite pattern with environmental severity.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

42 downloads since deposited on 05 Jan 2016
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:10 February 2015
Deposited On:05 Jan 2016 12:55
Last Modified:05 Apr 2016 19:48
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0030-1299
Publisher DOI:https://doi.org/10.1111/oik.01979

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 569kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations