Header

UZH-Logo

Maintenance Infos

Pretransplant dyslipidaemia influences primary graft dysfunction after lung transplantation


Cottini, Silvia R; Ehlers, Ulrike E; Pagnamenta, Alberto; Brandi, Giovanna; Weder, Walter; Schuepbach, Reto A; Béchir, Markus; Benden, Christian (2016). Pretransplant dyslipidaemia influences primary graft dysfunction after lung transplantation. Interactive Cardiovascular and Thoracic Surgery, 22(4):402-405.

Abstract

OBJECTIVES: Primary graft dysfunction (PGD) is a major cause of mortality within the first year following lung transplantation. Pulmonary hypertension, elevated body mass index (BMI), prolonged ischaemic time of the graft, intraoperative blood transfusions >1000 ml and the use of cardiopulmonary bypass or extracorporeal membrane oxygenation increase the risk for PGD. We aimed to evaluate whether dyslipidaemia is an additional risk factor for the development of PGD.
METHODS: We retrospectively analysed demographic and clinical data of 264 patients who received their first bilateral lung transplantation between March 2000 and October 2013 at our institution. The endpoint was PGD grade 3 at any time, defined according to the International Society for Heart and Lung Transplantation (ISHLT) criteria. Fasting lipid profiles at listing time or just before transplantation (baseline) were documented and dyslipidaemia was defined as any of the parameters being out of range. Comparisons of continuous variables between patients with PGD grade 3 and patients without were performed with the Mann-Whitney U-test, whereas proportions were compared with the χ(2) test. Continuous variables were presented as arithmetic means with standard deviation for ease of comparison, but levels of statistical significance were computed using the appropriate non-parametric statistical test. To identify PGD risk factors, a forward stepwise logistic regression model was used.
RESULTS: PGD occurred in 63 recipients (24%). Pretransplant dyslipidaemia was documented in 153 recipients (58%) and was significantly more prevalent among recipients developing PGD (45 vs 108, P < 0.013). Despite various underlying pulmonary pathologies, higher triglyceride (TG) levels (1.41 ± 0.78 vs 1.16 ± 0.78, P < 0.012), lower high-density lipoprotein-cholesterol (HDL-C) concentrations (1.24 ± 0.55 vs 1.57 ± 0.71, P < 0.0005) and higher cholesterol/HDL-C values (3.80 ± 2.02 vs 3.00 ± 0.92, P < 0.0005) were associated with a lower incidence of PGD. Patients with PGD had significantly longer ischaemic time (350 ± 89 vs 322 ± 91, P = 0.017) and higher BMI (23 ± 5 vs 21 ± 4.4, P < 0.007).
CONCLUSION: Dyslipidaemia seems to be an independent risk factor for PGD after lung transplantation: low circulating levels of HDL-C and hypertriglyceridaemia increase the incidence of PGD. Even if HDL-C levels are difficult to alter today, triglyceride and cholesterol levels can be addressed therapeutically and may have a positive influence on the development of PGD.

Abstract

OBJECTIVES: Primary graft dysfunction (PGD) is a major cause of mortality within the first year following lung transplantation. Pulmonary hypertension, elevated body mass index (BMI), prolonged ischaemic time of the graft, intraoperative blood transfusions >1000 ml and the use of cardiopulmonary bypass or extracorporeal membrane oxygenation increase the risk for PGD. We aimed to evaluate whether dyslipidaemia is an additional risk factor for the development of PGD.
METHODS: We retrospectively analysed demographic and clinical data of 264 patients who received their first bilateral lung transplantation between March 2000 and October 2013 at our institution. The endpoint was PGD grade 3 at any time, defined according to the International Society for Heart and Lung Transplantation (ISHLT) criteria. Fasting lipid profiles at listing time or just before transplantation (baseline) were documented and dyslipidaemia was defined as any of the parameters being out of range. Comparisons of continuous variables between patients with PGD grade 3 and patients without were performed with the Mann-Whitney U-test, whereas proportions were compared with the χ(2) test. Continuous variables were presented as arithmetic means with standard deviation for ease of comparison, but levels of statistical significance were computed using the appropriate non-parametric statistical test. To identify PGD risk factors, a forward stepwise logistic regression model was used.
RESULTS: PGD occurred in 63 recipients (24%). Pretransplant dyslipidaemia was documented in 153 recipients (58%) and was significantly more prevalent among recipients developing PGD (45 vs 108, P < 0.013). Despite various underlying pulmonary pathologies, higher triglyceride (TG) levels (1.41 ± 0.78 vs 1.16 ± 0.78, P < 0.012), lower high-density lipoprotein-cholesterol (HDL-C) concentrations (1.24 ± 0.55 vs 1.57 ± 0.71, P < 0.0005) and higher cholesterol/HDL-C values (3.80 ± 2.02 vs 3.00 ± 0.92, P < 0.0005) were associated with a lower incidence of PGD. Patients with PGD had significantly longer ischaemic time (350 ± 89 vs 322 ± 91, P = 0.017) and higher BMI (23 ± 5 vs 21 ± 4.4, P < 0.007).
CONCLUSION: Dyslipidaemia seems to be an independent risk factor for PGD after lung transplantation: low circulating levels of HDL-C and hypertriglyceridaemia increase the incidence of PGD. Even if HDL-C levels are difficult to alter today, triglyceride and cholesterol levels can be addressed therapeutically and may have a positive influence on the development of PGD.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Intensive Care Medicine
04 Faculty of Medicine > University Hospital Zurich > Clinic for Pneumology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Thoracic Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2016
Deposited On:29 Jan 2016 09:41
Last Modified:05 Apr 2016 19:48
Publisher:Oxford University Press
ISSN:1569-9285
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/icvts/ivv295
PubMed ID:26718318

Download

Full text not available from this repository.
View at publisher