Header

UZH-Logo

Maintenance Infos

Targeted delivery of CCR2 antagonist to activated pulmonary endothelium prevents metastasis


Roblek, Marko; Calin, Manuela; Schlesinger, Martin; Stan, Daniela; Zeisig, Reiner; Simionescu, Maya; Bendas, Gerd; Borsig, Lubor (2015). Targeted delivery of CCR2 antagonist to activated pulmonary endothelium prevents metastasis. Journal of Controlled Release, 220(PtA):341-347.

Abstract

Enhanced levels of the inflammatory chemokine CCL2 are known to correlate with increased tumorigenesis and metastases, and thereby poor prognosis for cancer patients. The CCL2-CCR2 chemokine axis was shown to facilitate the metastatic initiation through the recruitment of inflammatory monocytes and the activation of endothelial cells at metastatic sites. Both steps are required for efficient cancer cell trans-endothelial migration and seeding in the targeted tissue. The translation of preclinical evidence proved to be challenging due to systemic effects of chemokine inhibition and limited target specificity. Here we tested an approach of a targeted delivery of the CCR2 antagonist Teijin Compound 1 to metastatic sites. VCAM-1 binding peptide tagged liposomes carrying the CCR2 antagonist enabled a specific delivery to cancer cell-activated endothelium. The subsequent binding of target-sensitive liposomes triggered the release of the Teijin Compound 1 and thereby local inhibition of CCR2 in the lungs. Blocking of CCR2 resulted in reduced induction of the lungs vascular permeability, and thereby reduced tumor cell extravasation. However, the recruitment of inflammatory monocytes to the pre-metastatic lungs remained unaltered. Endothelial VCAM-1 targeted delivery of the CCR2 antagonist resulted in inhibition of pulmonary metastases both in a murine (MC-38GFP cells) and a human xenograft (patient-derived cells) model. Thus, timely- and spatially-defined inhibition of CCR2 signaling represents a potential therapeutic approach for treatment of metastasis without affecting homeostatic functions.

Abstract

Enhanced levels of the inflammatory chemokine CCL2 are known to correlate with increased tumorigenesis and metastases, and thereby poor prognosis for cancer patients. The CCL2-CCR2 chemokine axis was shown to facilitate the metastatic initiation through the recruitment of inflammatory monocytes and the activation of endothelial cells at metastatic sites. Both steps are required for efficient cancer cell trans-endothelial migration and seeding in the targeted tissue. The translation of preclinical evidence proved to be challenging due to systemic effects of chemokine inhibition and limited target specificity. Here we tested an approach of a targeted delivery of the CCR2 antagonist Teijin Compound 1 to metastatic sites. VCAM-1 binding peptide tagged liposomes carrying the CCR2 antagonist enabled a specific delivery to cancer cell-activated endothelium. The subsequent binding of target-sensitive liposomes triggered the release of the Teijin Compound 1 and thereby local inhibition of CCR2 in the lungs. Blocking of CCR2 resulted in reduced induction of the lungs vascular permeability, and thereby reduced tumor cell extravasation. However, the recruitment of inflammatory monocytes to the pre-metastatic lungs remained unaltered. Endothelial VCAM-1 targeted delivery of the CCR2 antagonist resulted in inhibition of pulmonary metastases both in a murine (MC-38GFP cells) and a human xenograft (patient-derived cells) model. Thus, timely- and spatially-defined inhibition of CCR2 signaling represents a potential therapeutic approach for treatment of metastasis without affecting homeostatic functions.

Statistics

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

22 downloads since deposited on 05 Jan 2016
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:28 December 2015
Deposited On:05 Jan 2016 14:12
Last Modified:01 Dec 2016 01:01
Publisher:Elsevier
ISSN:0168-3659
Funders:SNF
Publisher DOI:https://doi.org/10.1016/j.jconrel.2015.10.055
PubMed ID:26522070

Download

Download PDF  'Targeted delivery of CCR2 antagonist to activated pulmonary endothelium prevents metastasis'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 704kB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)