Header

UZH-Logo

Maintenance Infos

Structural insights into the MMACHC-MMADHC protein complex involved in vitamin B12 trafficking


Froese, D Sean; Kopec, Jolanta; Fitzpatrick, Fiona; Schuller, Marion; McCorvie, Thomas J; Chalk, Rod; Plessl, Tanja; Fettelschoss, Victoria; Fowler, Brian; Baumgartner, Matthias R; Yue, Wyatt W (2015). Structural insights into the MMACHC-MMADHC protein complex involved in vitamin B12 trafficking. Journal of Biological Chemistry, 290(49):29167-29177.

Abstract

Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular "trafficking chaperone" highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations.

Abstract

Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular "trafficking chaperone" highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations.

Statistics

Citations

7 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 08 Jan 2016
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:4 December 2015
Deposited On:08 Jan 2016 12:56
Last Modified:16 Aug 2017 10:49
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1074/jbc.M115.683268
PubMed ID:26483544

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations