Header

UZH-Logo

Maintenance Infos

Closing the pressure gap in x-ray photoelectron spectroscopy by membrane hydrogenation


Delmelle, Renaud; Probst, Benjamin; Alberto, Roger; Züttel, Andreas; Bleiner, Davide; Borgschulte, Andreas (2015). Closing the pressure gap in x-ray photoelectron spectroscopy by membrane hydrogenation. Review of Scientific Instruments, 86(5):online.

Abstract

Comprehensive studies of gas-solid reactions require the in-situ interaction of the gas at a pressure beyond the operating pressure of ultrahigh vacuum (UHV) X-ray photoelectron spectroscopy (XPS). The recent progress of near ambient pressure XPS allows to dose gases to the sample up to a pressure of 20 mbar. The present work describes an alternative to this experimental challenge, with a focus on H2 as the interacting gas. Instead of exposing the sample under investigation to gaseous hydrogen, the sample is in contact with a hydrogen permeation membrane, through which hydrogen is transported from the outside to the sample as atomic hydrogen. Thereby, we can reach local hydrogen concentrations at the sample inside an UHV chamber, which is equipped with surface science tools, and this corresponds to a hydrogen pressure up to 1 bar without affecting the sensitivity or energy resolution of the spectrometer. This experimental approach is validated by two examples, that is, the reduction of a catalyst precursor for CO2 hydrogenation and the hydrogenation of a water reduction catalyst for photocatalytic H2 production, but it opens the possibility of the new in situ characterisation of energy materials and catalysts.

Abstract

Comprehensive studies of gas-solid reactions require the in-situ interaction of the gas at a pressure beyond the operating pressure of ultrahigh vacuum (UHV) X-ray photoelectron spectroscopy (XPS). The recent progress of near ambient pressure XPS allows to dose gases to the sample up to a pressure of 20 mbar. The present work describes an alternative to this experimental challenge, with a focus on H2 as the interacting gas. Instead of exposing the sample under investigation to gaseous hydrogen, the sample is in contact with a hydrogen permeation membrane, through which hydrogen is transported from the outside to the sample as atomic hydrogen. Thereby, we can reach local hydrogen concentrations at the sample inside an UHV chamber, which is equipped with surface science tools, and this corresponds to a hydrogen pressure up to 1 bar without affecting the sensitivity or energy resolution of the spectrometer. This experimental approach is validated by two examples, that is, the reduction of a catalyst precursor for CO2 hydrogenation and the hydrogenation of a water reduction catalyst for photocatalytic H2 production, but it opens the possibility of the new in situ characterisation of energy materials and catalysts.

Statistics

Citations

3 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

35 downloads since deposited on 14 Jan 2016
29 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:May 2015
Deposited On:14 Jan 2016 09:34
Last Modified:12 May 2016 10:47
Publisher:American Institute of Physics
ISSN:0034-6748
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1063/1.4921353

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations