Header

UZH-Logo

Maintenance Infos

Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy


Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L (2015). Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy. In: Lossi, Laura; Merighi, Adalberto. Neuronal Cell Death. New York: Springer, 269-293.

Abstract

Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

Abstract

Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
6 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Virology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2015
Deposited On:14 Jan 2016 08:54
Last Modified:14 Feb 2018 10:29
Publisher:Springer
ISSN:1064-3745
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/978-1-4939-2152-2_20
PubMed ID:25431072

Download

Full text not available from this repository.
View at publisher

Get full-text in a library