Header

UZH-Logo

Maintenance Infos

Helicobacter pylori activates the TLR2/NLRP3/caspase-1/IL-18 axis to induce regulatory T-cells, establish persistent infection and promote tolerance to allergens


Koch, Katrin N; Müller, Anne (2015). Helicobacter pylori activates the TLR2/NLRP3/caspase-1/IL-18 axis to induce regulatory T-cells, establish persistent infection and promote tolerance to allergens. Gut Microbes, 6(6):382-387.

Abstract

The Gram-negative bacterium Helicobacter pylori is both a normal constituent of the human gastric microbiota as well as a pathogen tightly associated with severe gastric disorders. The ability of H. pylori to activate the inflammasome and caspase-1 in antigen-presenting and other cells, and the resulting processing and release of caspase-1-dependent cytokines, impacts both the immunomodulatory and pathogenic activities of H. pylori. This article summarizes recent insights by us and others on the bacterial and host prerequisites of inflammasome activation. H. pylori predominantly activates the NLRP3 inflammasome through a process that requires TLR2-dependent licensing. We identified the urease enzyme, a colonization determinant known to be required for acid adaptation, as critically required for activation of the TLR2/NLRP3/caspase-1 axis. The phenotypes of urease mutants, as well as mouse strains defective for TLR2 or NLRP3, are discussed with respect to their ability to support persistent colonization, immune tolerance and immunity to H. pylori.

Abstract

The Gram-negative bacterium Helicobacter pylori is both a normal constituent of the human gastric microbiota as well as a pathogen tightly associated with severe gastric disorders. The ability of H. pylori to activate the inflammasome and caspase-1 in antigen-presenting and other cells, and the resulting processing and release of caspase-1-dependent cytokines, impacts both the immunomodulatory and pathogenic activities of H. pylori. This article summarizes recent insights by us and others on the bacterial and host prerequisites of inflammasome activation. H. pylori predominantly activates the NLRP3 inflammasome through a process that requires TLR2-dependent licensing. We identified the urease enzyme, a colonization determinant known to be required for acid adaptation, as critically required for activation of the TLR2/NLRP3/caspase-1 axis. The phenotypes of urease mutants, as well as mouse strains defective for TLR2 or NLRP3, are discussed with respect to their ability to support persistent colonization, immune tolerance and immunity to H. pylori.

Statistics

Citations

Altmetrics

Downloads

2 downloads since deposited on 15 Jan 2016
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2 November 2015
Deposited On:15 Jan 2016 11:41
Last Modified:05 Apr 2016 19:52
Publisher:Taylor & Francis
ISSN:1949-0976
Publisher DOI:https://doi.org/10.1080/19490976.2015.1105427
PubMed ID:26727421

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 683kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations