Header

UZH-Logo

Maintenance Infos

Floral odour and reproductive isolation in two species of Silene


Waelti, M O; Muhlemann, J K; Widmer, A; Schiestl, F P (2008). Floral odour and reproductive isolation in two species of Silene. Journal of Evolutionary Biology, 21(1):111-121.

Abstract

Mechanisms preventing interspecific pollination are important in closely related plant species, in particular when post-zygotic barriers are weak or absent. We investigated the role of floral odour in reproductive isolation between the two closely related species Silene latifolia and S. dioica. First, we tested whether floral odour composition and emission differed between the species. We found significant odour differences, but contrary to expectations, both species showed a rhythmic emission of the same compounds between day and night. Second, in a field experiment, odour of the two species was made more similar by applying phenylacetaldehyde to flowers. This manipulation led to higher pollen-analogue transfer between species, revealing that floral odour differences are important for maintaining reproductive isolation. We conclude that differences in single key compounds can reduce pollen transfer across species boundaries by pollinators and demonstrate that odour differences are an important component of premating floral isolation between closely related plant species.

Abstract

Mechanisms preventing interspecific pollination are important in closely related plant species, in particular when post-zygotic barriers are weak or absent. We investigated the role of floral odour in reproductive isolation between the two closely related species Silene latifolia and S. dioica. First, we tested whether floral odour composition and emission differed between the species. We found significant odour differences, but contrary to expectations, both species showed a rhythmic emission of the same compounds between day and night. Second, in a field experiment, odour of the two species was made more similar by applying phenylacetaldehyde to flowers. This manipulation led to higher pollen-analogue transfer between species, revealing that floral odour differences are important for maintaining reproductive isolation. We conclude that differences in single key compounds can reduce pollen transfer across species boundaries by pollinators and demonstrate that odour differences are an important component of premating floral isolation between closely related plant species.

Statistics

Citations

63 citations in Web of Science®
73 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 30 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
Dewey Decimal Classification:580 Plants (Botany)
Uncontrolled Keywords:floral odour, scent, phenylacetaldehyde, pollen transfer, reproductive isolation, Silene dioica, Silene latifolia, species boundaries
Language:English
Date:January 2008
Deposited On:30 Jan 2009 08:44
Last Modified:05 Apr 2016 12:55
Publisher:Wiley-Blackwell
ISSN:1010-061X
Publisher DOI:https://doi.org/10.1111/j.1420-9101.2007.01461.x
PubMed ID:18031491

Download

Preview Icon on Download
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations