Header

UZH-Logo

Maintenance Infos

A 1 x 400 Backside-Illuminated SPAD Sensor With 49.7 ps Resolution, 30 pJ/Sample TDCs Fabricated in 3D CMOS Technology for Near-Infrared Optical Tomography


Pavia, Juan Mata; Scandini, Mario; Lindner, Scott; Wolf, Martin; Charbon, Edoardo (2015). A 1 x 400 Backside-Illuminated SPAD Sensor With 49.7 ps Resolution, 30 pJ/Sample TDCs Fabricated in 3D CMOS Technology for Near-Infrared Optical Tomography. IEEE Journal of Solid State Circuits, 50(10):2406-2418.

Abstract

A 1 × 400 array of backside-illuminated SPADs fabricated in 130 nm 3D IC CMOS technology is presented. Sensing is performed in the top tier substrate and time-to-digital conversion in the bottom tier. Clusters of eight pixels are connected to a winner-take-all circuit with collision detection capabilities to realise an efficient sharing of the time-to-digital converter (TDC). The sensor's 100 TDCs are based on a dual-frequency architecture enabling 30 pJ per conversion at a rate of 13.3 ms/s per TDC. The resolution (1 LSB) of the TDCs is 49.7 ps with a standard deviation of 0.8 ps across the entire array; the mean DNL is ±0.44 LSB and the mean INL is ±0.47. The chip was designed for use in near-infrared optical tomography (NIROT) systems for brain imaging and diagnostics. Measurements performed on a silicon phantom proved its suitability for NIROT applications.

Abstract

A 1 × 400 array of backside-illuminated SPADs fabricated in 130 nm 3D IC CMOS technology is presented. Sensing is performed in the top tier substrate and time-to-digital conversion in the bottom tier. Clusters of eight pixels are connected to a winner-take-all circuit with collision detection capabilities to realise an efficient sharing of the time-to-digital converter (TDC). The sensor's 100 TDCs are based on a dual-frequency architecture enabling 30 pJ per conversion at a rate of 13.3 ms/s per TDC. The resolution (1 LSB) of the TDCs is 49.7 ps with a standard deviation of 0.8 ps across the entire array; the mean DNL is ±0.44 LSB and the mean INL is ±0.47. The chip was designed for use in near-infrared optical tomography (NIROT) systems for brain imaging and diagnostics. Measurements performed on a silicon phantom proved its suitability for NIROT applications.

Statistics

Citations

12 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Jan 2016
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neonatology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2015
Deposited On:18 Jan 2016 15:22
Last Modified:08 Dec 2017 16:59
Publisher:Institute of Electrical and Electronics Engineers
ISSN:0018-9200
Publisher DOI:https://doi.org/10.1109/JSSC.2015.2467170

Download