Header

UZH-Logo

Maintenance Infos

Synthesis, Characterization, and Thermochemical Redox Performance of Hf4+, Zr4+, and Sc3+Doped Ceria for Splitting CO2


Scheffe, Jonathan R; Jacot, Roger; Patzke, Greta R; Steinfeld, Aldo (2013). Synthesis, Characterization, and Thermochemical Redox Performance of Hf4+, Zr4+, and Sc3+Doped Ceria for Splitting CO2. Journal of Physical Chemistry C, 117(46):24104-24114.

Abstract

We present results on the thermochemical redox performance and analytical characterization of Hf4+, Zr4+, and Sc3+ doped ceria solutions synthesized via a sol–gel technique, all of which have recently been shown to be promising for splitting CO2. Dopant concentrations ranging from 5 to 15 mol % have been investigated and thermally cycled at reduction temperatures of 1773 K and oxidation temperatures ranging from 873 to 1073 K by thermogravimetry. The degree of reduction of Hf and Zr doped materials is substantially higher than those of pure ceria and Sc doped ceria and increases with dopant concentration. Overall, 10 mol % Hf doped ceria results in the largest CO yields per mole of oxide (∼0.5 mass % versus 0.35 mass % for pure ceria) based on measured mass changes during oxidation. However, these yields were largely influenced by their rate of reoxidation, not necessarily thermodynamic limitations, as equilibrium was not achieved for either Hf or Zr doped samples after 45 min exposure to CO2 at all oxidation temperatures. Additionally, sample preparation and grain size strongly affected the oxidation rates and subsequent yields, resulting in slightly decreasing yields as the samples were cycled up to 10 times. X-ray diffraction, Raman, FT-IR, and UV/vis spectroscopy in combination with SEM-EDX have been applied to characterize the elemental, crystalline, and morphological attributes before and after redox reactions.

Abstract

We present results on the thermochemical redox performance and analytical characterization of Hf4+, Zr4+, and Sc3+ doped ceria solutions synthesized via a sol–gel technique, all of which have recently been shown to be promising for splitting CO2. Dopant concentrations ranging from 5 to 15 mol % have been investigated and thermally cycled at reduction temperatures of 1773 K and oxidation temperatures ranging from 873 to 1073 K by thermogravimetry. The degree of reduction of Hf and Zr doped materials is substantially higher than those of pure ceria and Sc doped ceria and increases with dopant concentration. Overall, 10 mol % Hf doped ceria results in the largest CO yields per mole of oxide (∼0.5 mass % versus 0.35 mass % for pure ceria) based on measured mass changes during oxidation. However, these yields were largely influenced by their rate of reoxidation, not necessarily thermodynamic limitations, as equilibrium was not achieved for either Hf or Zr doped samples after 45 min exposure to CO2 at all oxidation temperatures. Additionally, sample preparation and grain size strongly affected the oxidation rates and subsequent yields, resulting in slightly decreasing yields as the samples were cycled up to 10 times. X-ray diffraction, Raman, FT-IR, and UV/vis spectroscopy in combination with SEM-EDX have been applied to characterize the elemental, crystalline, and morphological attributes before and after redox reactions.

Statistics

Citations

63 citations in Web of Science®
66 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:21 November 2013
Deposited On:13 Jan 2016 16:22
Last Modified:08 Dec 2017 17:01
Publisher:American Chemical Society (ACS)
ISSN:1932-7447
Publisher DOI:https://doi.org/10.1021/jp4050572

Download

Full text not available from this repository.
View at publisher