Header

UZH-Logo

Maintenance Infos

Electronic and optical properties of N-doped Bi2O3 polymorphs for visible light-induced photocatalysis


Wang, Fang; Cao, Kun; Wu, Yi; Patzke, Greta R; Zhou, Ying (2015). Electronic and optical properties of N-doped Bi2O3 polymorphs for visible light-induced photocatalysis. Journal of Molecular Modeling, 21(3):2596-2604.

Abstract

The effect of N doping on the crystal structure, electronic, and optical properties of α-Bi2O3 and β-Bi2O3 has been studied in detail based with first principle calculations. The crystallographic features of Bi2O3 polymorphs are not substantially changed through N doping, whereas charge transfer from Bi to N results in large variations of charge density distribution. N-doped β-Bi2O3 exhibits improved thermal stability due to stronger Bi-N covalent bonds and lower defect formation energy, and the convenient preparative access agrees well with experimental observations. Calculated band structures and optical properties indicate that N doping does not induce major band gap narrowing, but leads to the presence of isolated bands above the VBM induced by N 2p for both α-Bi2O3 and β-Bi2O3 which induce large red-shifts of their visible light absoprtion properties. These isolated bands act as acceptor levels and facilitate electron transition under visible light illumination through introduction of steps between VB and CB, thereby rendering the materials quite promising for photocatalytic applications.

Abstract

The effect of N doping on the crystal structure, electronic, and optical properties of α-Bi2O3 and β-Bi2O3 has been studied in detail based with first principle calculations. The crystallographic features of Bi2O3 polymorphs are not substantially changed through N doping, whereas charge transfer from Bi to N results in large variations of charge density distribution. N-doped β-Bi2O3 exhibits improved thermal stability due to stronger Bi-N covalent bonds and lower defect formation energy, and the convenient preparative access agrees well with experimental observations. Calculated band structures and optical properties indicate that N doping does not induce major band gap narrowing, but leads to the presence of isolated bands above the VBM induced by N 2p for both α-Bi2O3 and β-Bi2O3 which induce large red-shifts of their visible light absoprtion properties. These isolated bands act as acceptor levels and facilitate electron transition under visible light illumination through introduction of steps between VB and CB, thereby rendering the materials quite promising for photocatalytic applications.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:March 2015
Deposited On:18 Jan 2016 15:56
Last Modified:27 May 2017 07:20
Publisher:Springer
ISSN:0948-5023
Publisher DOI:https://doi.org/10.1007/s00894-015-2596-2

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations