Header

UZH-Logo

Maintenance Infos

Nickel-Containing Keggin-Type Polyoxometalates as Hydrogen Evolution Catalysts: Photochemical Structure-Activity Relationships


von Allmen, Kim; Moré, René; Müller, Rafael; Soriano-López, Joaquín; Linden, Anthony; Patzke, Greta R (2015). Nickel-Containing Keggin-Type Polyoxometalates as Hydrogen Evolution Catalysts: Photochemical Structure-Activity Relationships. ChemPlusChem, 80(9):1389-1398.

Abstract

In search of structure–activity relationships for polyoxometalate (POM)-based water reduction catalysts, nickel-monosubstituted Keggin-type POMs ([Ni(H2O)XW11O39]n−; X[DOUBLE BOND]P, Si, Ge) were compared with respect to their activity in photochemical hydrogen evolution. The title compound series was characterized by single-crystal X-ray diffraction methods and a wide range of spectroscopic and electrochemical techniques. Nickel substitution was identified as a crucial feature for catalytic activity through comparison with nickel-free reference POMs. Furthermore, turnover number (TON) and turnover frequency strongly depended on the heteroatom X, and the highest TON among the series was recorded for [Ni(H2O)GeW11O39]6−. Photochemical hydrogen evolution activity was compared with redox and onset potentials obtained from electrochemical analyses. Furthermore, activity trends were correlated with electronic structure properties derived from density functional theory calculations.

Abstract

In search of structure–activity relationships for polyoxometalate (POM)-based water reduction catalysts, nickel-monosubstituted Keggin-type POMs ([Ni(H2O)XW11O39]n−; X[DOUBLE BOND]P, Si, Ge) were compared with respect to their activity in photochemical hydrogen evolution. The title compound series was characterized by single-crystal X-ray diffraction methods and a wide range of spectroscopic and electrochemical techniques. Nickel substitution was identified as a crucial feature for catalytic activity through comparison with nickel-free reference POMs. Furthermore, turnover number (TON) and turnover frequency strongly depended on the heteroatom X, and the highest TON among the series was recorded for [Ni(H2O)GeW11O39]6−. Photochemical hydrogen evolution activity was compared with redox and onset potentials obtained from electrochemical analyses. Furthermore, activity trends were correlated with electronic structure properties derived from density functional theory calculations.

Statistics

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 13 Jan 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:September 2015
Deposited On:13 Jan 2016 16:06
Last Modified:14 May 2017 05:15
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:2192-6506
Publisher DOI:https://doi.org/10.1002/cplu.201500074

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations