Header

UZH-Logo

Maintenance Infos

Explicit analytic equations for multimolecular thermal melting curves


Böttcher, Albrecht; Kowerko, Danny; Sigel, Roland K O (2015). Explicit analytic equations for multimolecular thermal melting curves. Biophysical Chemistry, 202:32-39.

Abstract

The analysis of thermal melting curves requires the knowledge of equations for the temperature dependence of the relative fraction of folded and unfolded components. To implement these equations as standard tools for curve fitting, they should be as explicit as possible. From the van't Hoff formalism it is known that the equilibrium constant and hence the folded fraction is a function of the absolute temperature, the van't Hoff transition enthalpy, and the melting temperature. The work presented here is devoted to the mathematically self-contained derivation and the listing of explicit equations for the folded fraction as a function of the thermodynamic parameters in the case of arbitrary molecularities. Part of the results are known, others are new. It is in particular shown for the first time that the folded fraction is the composition of a universal function which depends solely on the molecularity and a dimensionless function which is governed by the concrete thermodynamic regime but is independent of the molecularity. The results will prove useful for extracting the thermodynamic parameters from experimental data on the basis of regression analysis. As supporting information, open-source Matlab scripts for the computer implementation of the equations are provided.

Abstract

The analysis of thermal melting curves requires the knowledge of equations for the temperature dependence of the relative fraction of folded and unfolded components. To implement these equations as standard tools for curve fitting, they should be as explicit as possible. From the van't Hoff formalism it is known that the equilibrium constant and hence the folded fraction is a function of the absolute temperature, the van't Hoff transition enthalpy, and the melting temperature. The work presented here is devoted to the mathematically self-contained derivation and the listing of explicit equations for the folded fraction as a function of the thermodynamic parameters in the case of arbitrary molecularities. Part of the results are known, others are new. It is in particular shown for the first time that the folded fraction is the composition of a universal function which depends solely on the molecularity and a dimensionless function which is governed by the concrete thermodynamic regime but is independent of the molecularity. The results will prove useful for extracting the thermodynamic parameters from experimental data on the basis of regression analysis. As supporting information, open-source Matlab scripts for the computer implementation of the equations are provided.

Statistics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:July 2015
Deposited On:21 Jan 2016 11:39
Last Modified:27 May 2017 07:22
Publisher:Elsevier
ISSN:0301-4622
Publisher DOI:https://doi.org/10.1016/j.bpc.2015.04.001

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations