First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis

Dutkowski, Philipp; Polak, Wojciech G; Muiesan, Paolo; Schlegel, Andrea; Verhoeven, Cornelia J; Scalera, Irene; DeOliveira, Michelle L; Kron, Philipp; Clavien, Pierre-Alain

Abstract: BACKGROUND: Exposure of donor liver grafts to prolonged periods of warm ischemia before procurement causes injuries including intrahepatic cholangiopathy, which may lead to graft loss. Due to unavoidable prolonged ischemic time before procurement in donation after cardiac death (DCD) donation in 1 participating center, each liver graft of this center was pretreated with the new machine perfusion "Hypothermic Oxygenated PErfusion" (HOPE) in an attempt to improve graft quality before implantation. METHODS: HOPE-treated DCD livers (n = 25) were matched and compared with normally preserved (static cold preservation) DCD liver grafts (n = 50) from 2 well-established European programs. Criteria for matching included duration of warm ischemia and key confounders summarized in the balance of risk score. In a second step, perfused and unperfused DCD livers were compared with liver grafts from standard brain dead donors (n = 50), also matched to the balance of risk score, serving as baseline controls. RESULTS: HOPE treatment of DCD livers significantly decreased graft injury compared with matched cold-stored DCD livers regarding peak alanine-aminotransferase (1239 vs 2065 U/L, P = 0.02), intrahepatic cholangiopathy (0% vs 22%, P = 0.015), biliary complications (20% vs 46%, P = 0.042), and 1-year graft survival (90% vs 69%, P = 0.035). No graft failure due to intrahepatic cholangiopathy or nonfunction occurred in HOPE-treated livers, whereas 18% of unperfused DCD livers needed retransplantation. In addition, HOPE-perfused DCD livers achieved similar results as control donation after brain death livers in all investigated endpoints. CONCLUSIONS: HOPE seems to offer important benefits in preserving higher-risk DCD liver grafts.

DOI: https://doi.org/10.1097/SLA.0000000000001473

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-119184
Published Version

Originally published at:
Dutkowski, Philipp; Polak, Wojciech G; Muiesan, Paolo; Schlegel, Andrea; Verhoeven, Cornelia J; Scalera, Irene; DeOliveira, Michelle L; Kron, Philipp; Clavien, Pierre-Alain (2015). First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Annals of Surgery, 262(5):764-771.
DOI: https://doi.org/10.1097/SLA.0000000000001473
First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants
An International-matched Case Analysis

Philipp Dutkowski, MD, Wojciech G. Polak, MD, PhD, Paolo Muiesan, MD, Andrea Schlegel, MD, Cornelia J. Verhoeven, Irene Scalera, MD, Michelle L. DeOliveira, MD, Philipp Kron, MD, and Pierre-Alain Clavien, MD, PhD, FACS (Hon)

Background: Exposure of donor liver grafts to prolonged periods of warm ischemia before procurement causes injuries including intrahepatic cholangiopathy, which may lead to graft loss. Due to unavoidable prolonged ischemic time before procurement in donation after cardiac death (DCD) donation in 1 participating center, each liver graft of this center was pretreated with the new machine perfusion “Hypothermic Oxygenated PErfusion” (HOPE) in an attempt to improve graft quality before implantation.

Methods: HOPE-treated DCD livers (n = 25) were matched and compared with normally preserved (static cold preservation) DCD liver grafts (n = 50) from 2 well-established European programs. Criteria for matching included duration of warm ischemia and key confounders summarized in the balance of risk score. In a second step, perfused and unperfused DCD livers were compared with liver grafts from standard brain dead donors (n = 50), also matched to the balance of risk score, serving as baseline controls.

Results: HOPE treatment of DCD livers significantly decreased graft injury compared with matched cold-stored DCD livers regarding peak alanineaminotransferase (1239 vs 2065 U/L, P = 0.02), intrahepatic cholangiopathy (0% vs 22%, P = 0.015), biliary complications (20% vs 46%, P = 0.042), and 1-year graft survival (90% vs 69%, P = 0.035). No graft failure due to intrahepatic cholangiopathy or nonfunction occurred in HOPE-treated livers, whereas 18% of unperfused DCD livers needed retransplantation. In addition, HOPE-perfused DCD livers achieved similar results as control donation after brain death livers in all investigated endpoints.

Conclusions: HOPE seems to offer important benefits in preserving high-risk DCD liver grafts.

Keywords: donation after cardiac death, Hypothermic Oxygenated PErfusion, ischemic cholangiopathy

From the Swiss HPB and Transplant Centre, Department of Surgery, University Hospital Zurich, Zurich, Switzerland; [Department of Surgery, Division of HPB and Transplant Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands; and Liver Unit Queen Elisabeth Hospital Birmingham, Edgbaston, Birmingham, United Kingdom.

P.D. was supported by the Swiss National Science Foundation grant no 32003B-140776/1 and 32003B-153012/1. F.A.C. was supported by grant no 32003B-109906 of the Swiss National Science Foundation, the Clinical Research Priority Program of the University of Zurich, and the Liver and Gastrointestinal (LGID) foundation.

P.D., W.G.P., and P.M. contributed equally to this article.

The authors declare no conflicts of interest.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s Web site (www.annalsofsurgery.com).

Reprints: Pierre A. Clavien, MD, PhD, Department of Surgery & Transplantation, University Hospital Zurich, Zofingenerstrasse 100, CH-8091 Zurich. E-mail: clavien@access.uzh.ch.

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

ISSN: 0003-4932/142/6105-0821
DOI: 10.1097/SLA.0000000000001473

764/ www.annalsofsurgery.com

PAPER OF THE 22ND ANNUAL ESA MEETING

Before the introduction of the currently widely accepted brain death criteria in 1968, donation after cardiac death (DCD) was the only source of cadaveric grafts for orthotopic liver transplantation (OLT). Although subsequently in the last 3 decades, donation after brain death (DBD) has been preferentially used in most countries, the worldwide increasing shortage of brain death donors reestablished the interest for DCD donors, as an additional potential pool of organs. Several reports, however, agree that long periods of donor warm ischemia in DCD donation are responsible for intrahepatic cholangiopathy and graft loss, besides additional risk factors including donor age, duration of graft-cold ischemia, previous liver transplant, recipient age, and recipient body-mass-index.

Dynamic liver preservation techniques using perfusion of a variety of solutions at different temperatures, have been proposed to protect or rescue marginal liver grafts, including DCD livers. The Zurich group has developed a hypothermic oxygenated perfusion system (HOPE) of liver grafts, initially on basis of experimental research in various animal models, followed by clinical application in grafts obtained from DCD donors earlier this year. DCD donation in Switzerland was possible only at the price of prolonged normothermic ischemia times due to local legislative regulations, and justified the routine use of HOPE in an attempt to improve graft quality before implantation. The aim of the current study is to test the impact of the HOPE protocol in the first worldwide-perfused 25 human DCD grafts with subsequent transplantation. Thus, we compared standard procurement of DCD grafts, that is, without dynamic perfusion techniques, with HOPE-treated DCD grafts. Short of a randomized controlled trial (RCT), we matched both approaches for the duration of donor warm ischemia and additional key risk factors.

METHODS

Study Design
The study was designed to analyze conventional cold-stored controlled DCD livers (Maastricht category III) and DCD livers, treated by HOPE. For this purpose, all HOPE-treated DCD livers from Zurich (n = 25) were matched (1:2) with DCD liver grafts (n = 50) from 2 European DCD liver transplant programs (Rotterdam, The Netherlands, n = 40, and Birmingham, UK, n = 10) (Supplementary Table 1, Supplementary Figure 1, http://links.lww.com/AnnalsSurgery ● Volume 262, Number 5, November 2015

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Hypothermic Oxygenated Perfusion

Machine perfusion of DCD livers was performed, as reported earlier. Briefly, hypothermic oxygenated perfusion was done in all cases after cold flush and cold storage during recipient hepatectomy, exclusively through the portal vein for 1 to 2 hours [median 118 minutes, interquartile range (IQR) 101–149 minutes]. As perfusate, we used recirculated University of Wiscon-sin (UW) glucose solution (RPS-1) at low flow rates (120–180 mL/min), which was

Key Confounders in Matched Patients

The matching process resulted in comparable asystolic donor warm ischemia (18 vs 17.5 minutes, ns) and BAR scores (4 vs 5.5, ns) between DCD groups (HOPE-treated DCD vs unperfused DCD) (Table 1). Consistently, donor age and recipient MELD score were also not different (54 vs 48 years, ns; MELD 13 vs MELD 16, ns) (Table 1). Significant variations due to less suitable cases seemed in terms of the following parameters: first, cold storage was generally shorter in HOPE-treated compared with unperfused livers, because of in-house donors in all HOPE-treated cases, and also because of significant reduction of cold ischemia by the length of the perfusion time (188 vs 395 minutes, $P < 0.0001$) (Table 1). Secondly, recipient age was higher in HOPE-treated DCD livers (60 vs 56 years, ns) and BAR scores (4 vs 5.5, ns) (Table 1). Third, despite comparable total donor warm ischemia time (withdraw to cold flush) in both DCD groups (36 vs 33 minutes, ns), unperfused DCD livers exhibited a shorter period of relevant hypotension before cardiac arrest, resulting in significant shorter functional donor warm ischemia (systolic pressure < 50 mm Hg to cold flush) in unperfused DCD livers, as compared to HOPE-treated DCD livers (23 vs 31 minutes, $P < 0.0001$) (Table 1).

The control group (DBD patients) was comparable with HOPE-treated and unperfused DCD patients in terms of BAR and MELD scores (Table 1, Supplementary Figure 1, http://links.lww.com/SLA/A881).
oxygenated (pO₂ 80–100 kPa) and cooled (10°C) by an ECOPS device (Organ Assist).²²

Procurement and Definitions
Super rapid en bloc multiorgan retrieval was carried out in all DCD livers with heparinized flush of abdominal organs by cannulation of the iliac artery after abdominal incision according to earlier reports.²⁴ No premedication was given to DCD donors before withdrawal of support. The bile duct was flushed in situ and ex situ with preservation solution. All HOPE-treated DCD liver grafts were stored after procurement in Institute George Lopez-1 solution until machine perfusion, whereas unperfused DCD liver grafts were stored in UW solution. No DCD graft was treated with fibrinolytic agents.

Early allograft dysfunction was defined by the occurrence of the following: bilirubin > 170 μmol/L on day 7 after OLT, or international normalized ratio (INR) > 1.6 on day 7 after OLT, or peak alanine-aminotransferase (ALT) > 2000 U/L within the first 7 days after OLT.²³ IC was defined and classified as either multifocal or unifocal intrahepatic strictures without the presence of concomitant hepatic artery thrombosis or arterial complications.¹²,²⁶ Each patients chart was reviewed retrospectively for clinical data, liver function tests, and imaging. IC was detected clinically and confirmed by images (endoscopic, percutaneous, or magnetic resonance cholangiography). Median follow-up was 448, 528, and 1530 days for HOPE-treated DCD livers, unperfused DCD livers, and DBD liver, respectively.

Statistical Analysis
The results are expressed in median and IQR for metric parameters and in percentages for nominal parameters. Continuous and categorical parameters were compared with the 2-tailed Mann-Whitney-Wilcoxon nonparametric test; dichotomous parameters were compared with the Fisher exact test. Survival analysis was adjusted to cold ischemia in DCD groups (Cox regression). SPSS version 21 (IBM Corp., Armonk, NY) and GraphPad Prism version 5 (GraphPad Software, Inc, La Jolla, CA) were used for statistical analysis.

RESULTS
Comparison of HOPE Treated and Unperfused (Cold-stored) DCD Livers
HOPE treatment of DCD liver grafts improved significantly several biochemical and clinical parameters during OLT and after 1-year follow-up (Table 2). First, HOPE-treated DCD livers demonstrated less liver enzyme release after reperfusion, as compared to unperfused DCD livers (1239 vs 2065 U/L peak ALT, 1808 vs 2848 U/L peak aspartate-aminotransferase, 44 vs 109 μmol/L peak bilirubin) (Table 2, Figs. 1 and 2). Secondly, HOPE-treated DCD livers showed less early allograft dysfunction, as expressed by INR at day 1 (1.3 vs 1.9, P < 0.0001), or by increase of either ALT, bilirubin,
or INR during the first week after OLT2 (20% vs 44% early allograft dysfunction, $P = 0.046$, Table 2). Of note, liver function was delayed despite significant more substitution of coagulation factors during OLT in unperfused versus HOPE-treated DCD livers (6 vs 0 U fresh frozen plasma, Table 2; Fig. 1). Six percent of unperfused DCD liver grafts (3/50) showed primary nonfunction (PNF) after OLT compared with no PNF in HOPE-treated DCD livers (Table 2). Third, although HOPE treatment did not decrease the rate of extrahepatic biliary complications (5/25 vs 12/50), the percentage of intrahepatic cholangiopathy >1-year follow-up was significantly less compared with unperfused DCD livers (0/25 vs 11/50, $P = 0.013$; Table 2, Fig. 3). Consistently, 3- and 6-month serum levels of alkaline phosphates increased in unperfused as compared to HOPE-treated DCD livers (Table 2, Fig. 3). Eight of 50 unperfused DCD liver grafts developed TABLE 2. Outcome After OLT

<table>
<thead>
<tr>
<th></th>
<th>Unperfused DCD, N = 50</th>
<th>HOPE-treated DCD, N = 25</th>
<th>DBD, N = 50</th>
<th>$\rho^{1/2/3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraoperative RBC</td>
<td>2 U (0.8–6.3)</td>
<td>2 U (0–4)</td>
<td>1.6 U (0–7.3)</td>
<td>ns/ns/ns</td>
</tr>
<tr>
<td>Intraoperative FFP</td>
<td>6 U (2–12)</td>
<td>0 U (0)</td>
<td>0 U (0–12)</td>
<td>0.01/0.0001/ns</td>
</tr>
<tr>
<td>Duration of transplant</td>
<td>390 min (330–477)</td>
<td>345 min (300–413)</td>
<td>350 min (300–420)</td>
<td>ns/ns/ns</td>
</tr>
<tr>
<td>INR day 1</td>
<td>1.9 (1.1–1.6)</td>
<td>1.3 (1.6–2.1)</td>
<td>1.4 (1.2–1.7)</td>
<td><0.0001/ns</td>
</tr>
<tr>
<td>Peak ALT</td>
<td>2065 U/L (1331–3596)</td>
<td>1239 U/L (689–2126)</td>
<td>1124 U/L (693–2126)</td>
<td>0.0070/0.02/n</td>
</tr>
<tr>
<td>Peak AST</td>
<td>2848 U (1485–6724)</td>
<td>1808 U (1133–3547)</td>
<td>1473 U (762–3764)</td>
<td>0.0050/0.04/n</td>
</tr>
<tr>
<td>Peak creatinine</td>
<td>158 µmol/L (108–218)</td>
<td>154 µmol/L (105–313)</td>
<td>159 µmol/L (117–248)</td>
<td>ns/ns/ns</td>
</tr>
<tr>
<td>Renal replacement</td>
<td>5/50 (10%)</td>
<td>7/25 (28%)</td>
<td>11/50 (22%)</td>
<td>ns/ns</td>
</tr>
<tr>
<td>Peak bilirubine</td>
<td>109 µmol/L (60–183)</td>
<td>44 µmol/L (21–106)</td>
<td>116 (41–174)</td>
<td>0.03/0.04/n</td>
</tr>
<tr>
<td>Early graft dysfunction*</td>
<td>22/50 (44%)</td>
<td>5/25 (20%)</td>
<td>11/50 (22%)</td>
<td>0.03/0.04/n</td>
</tr>
<tr>
<td>PNF</td>
<td>3/50 (6%)</td>
<td>0/25</td>
<td>0/50</td>
<td>ns/ns/ss</td>
</tr>
<tr>
<td>HAT</td>
<td>3/50 (6%)</td>
<td>1/25 (4%)</td>
<td>1/50 (2%)</td>
<td>ns/ns/ss</td>
</tr>
<tr>
<td>Acute rejection (>RAI 4)</td>
<td>8/50 (16%)</td>
<td>3/25 (12%)</td>
<td>6/50 (12%)</td>
<td>ns/ns/ss</td>
</tr>
<tr>
<td>ICU stay</td>
<td>3 d (2–6)</td>
<td>3 d (1.3–5.7)</td>
<td>3 d (2–5.7)</td>
<td>ns/ns</td>
</tr>
<tr>
<td>Hospital stay</td>
<td>18 d (15–29)</td>
<td>20 d (14–23)</td>
<td>17.5 d (13–26)</td>
<td>ns/ns</td>
</tr>
<tr>
<td>3-month alkaline phosphatase</td>
<td>178 U/L (77–415)</td>
<td>109.5 U/L (63–740)</td>
<td>100 U/L (79–193)</td>
<td>0.05/0.04/n</td>
</tr>
<tr>
<td>6-month alkaline phosphatase</td>
<td>172.5 U/L (97–327)</td>
<td>92 U/L (71–220)</td>
<td>131 U/L (96.327)</td>
<td>ns/0.02/n</td>
</tr>
<tr>
<td>IC</td>
<td>11/50 (22%)</td>
<td>8/50 (16%)</td>
<td>0/25</td>
<td>2/50 (4%)</td>
</tr>
<tr>
<td>Multifocal†</td>
<td>3/50 (6%)</td>
<td>0/25</td>
<td>0/50</td>
<td>ns/ns</td>
</tr>
<tr>
<td>Unifocal†</td>
<td>12/50 (24%)</td>
<td>5/25 (20%)</td>
<td>10/50 (20%)</td>
<td>ns/ns</td>
</tr>
<tr>
<td>Total biliary complication</td>
<td>23/50 (46%)</td>
<td>5/25 (20%)</td>
<td>12/50 (24%)</td>
<td>0.03/0.042/n</td>
</tr>
<tr>
<td>Retransplant for IC or PNF</td>
<td>9/50 (18%)</td>
<td>0/25</td>
<td>1/50 (2%)</td>
<td>0.01/0.025/n</td>
</tr>
<tr>
<td>Graft loss total</td>
<td>15/50 (30%)</td>
<td>2/25 (8%)</td>
<td>2/50 (4%)</td>
<td>0.0090.041/n</td>
</tr>
<tr>
<td>1-year graft survival</td>
<td>69%</td>
<td>90%</td>
<td>96%</td>
<td>0.002/0.035/n</td>
</tr>
</tbody>
</table>

ALT indicates alanine-aminotransferase; AST, aspartate-aminotransferase; FFP, fresh frozen plasma; HAT, hepatic artery thrombosis; ICU, intensive care unit; RAI, rejection activity index; WI, warm ischemia.

*Definition of Early Allograft Dysfunction (EAD) according to Olthoff et al, Liver Transpl. 2010.
†Definition of ischemic cholangiopathy (IC) according to Lee et al, Liver Transpl. 2007 and Buis et al, Liver Transpl. 2007.

© 2015 Wolters Kluwer Health, Inc. All rights reserved.
www.annalsofsurgery.com | 767

FIGURE 2. Cumulative ALT and AST release during the first week after OLT demonstrated significant higher reperfusion injury in unperfused DCD livers as compared to HOPE-treated DCD and DBD livers (A, B). ALT, alanine-aminotransferase; AST, aspartate-aminotransferase.
multifocal IC with a median time to retransplantation of 153 days (IQR 75–301 days) (Supplementary Figure 2, http://links.lww.com/SLA/A881). HOPE treatment resulted furthermore in no graft loss due to PNF or intrahepatic biliary complications during the observation period in contrast to 18% graft losses in unperfused DCD livers (\(P = 0.025\), Table 2). Overall and cholangiopathy-free graft survival after 1 year was 90% in HOPE-treated DCD livers compared with 69% in unperfused DCD livers (\(P = 0.035\); Table 2, Fig. 3). The effect of HOPE was independent from the length of cold storage as tested by regression analysis (hazard ratio 4.19; 95% CI, 0.96–18.2).

Comparison of HOPE-treated and Unperfused (Cold-stored) DCD Livers With DBD Livers

To quantify the effect of HOPE, we compared all DCD livers with conventional cold-stored DBD livers, matched for key confounders by the BAR score.

Although the difference between matched unperfused DCD livers and DBD livers was high in terms of reperfusion injury, graft function, later bile duct complications, and graft survival, no significant differences were observed in all analyzed endpoints between HOPE-treated DCD livers and matched DBD livers (Figs. 1–3, Table 2).

DISCUSSION

This is the first comparison between standard-preserved and HOPE-treated DCD liver transplantation disclosing important benefits in favor of the HOPE approach. The study shows that DCD livers treated by HOPE developed less reperfusion injury and better graft function with a lower incidence of later intrahepatic biliary complications. The most relevant observation is an improved graft survival with the use of HOPE. In fact, HOPE-treated DCD livers achieved similar results in all investigated endpoints comparable with low-risk DBD liver transplants.\(^7\) The benefits of HOPE treatment could be documented from the initial phase of reperfusion until the later follow-up at 1 year after OLT.
Randomized trials to compare human machine liver perfusion techniques with conventional cold storage are not yet available. First reports on normothermic or hypothermic perfusion are currently restricted to feasibility and practical aspects in standard or extended liver grafts.\(^1,2,8,9\) Our recent experimental and clinical observations have suggested significant advantages for the HOPE technique on reperfusion injury in DCD livers,\(^10,11\) with further downstream impact on graft immune responses.\(^20\) HOPE also conferred protection against biliary injury in a rodent liver transplant model.\(^19\) The mechanisms seem to be related to changes in mitochondrial respiratory rates during HOPE in addition to perfusion effects on the sinusoidal glycocalyx.\(^16,51\) It is currently unclear, how much oxygen is needed under cold perfusion conditions in human livers. We, however, believe that the effects of HOPE depend on oxygenation of the perfusate, as recent experimental studies in pig livers with deoxygenated perfusates point to this fact.\(^18\)

Due to the severe shortage of organs in Switzerland, a DCD liver transplant program was initiated in 2012 in Zurich, but with strict ethical regulations (confirmation of brain death after cardiac arrest), resulting in long period of asystolic donor warm ischemia. Due to this unavoidable and unsuitable graft warm ischemia, and the knowledge gathered in animal models, DCD liver transplants program was founded HOPE strategy, which intended to avoid any cold storage periods of perfusion equipment. In contrast to the concept of normothermic biliary strictures cumulated in this analysis to 31%,\(^28\) with a strong correlation between the degree of initial reperfusion injury (peak ALT) and subsequent biliary injury. This observation underlines the importance of the initial ischemia-reperfusion injury before implantation, which, for example, can be prevented by machine perfusion techniques.

In conclusion, this study provides strong evidence that applying HOPE protects extended DCD livers from initial reperfusion injury leading to better graft function and the prevention of intrahepatic biliary complications. HOPE may therefore offer optimization of liver grafts before implantation by a simple and practical perfusion technique with a high impact on enlarging the donor pool. To further test the HOPE strategy, we have initiated a multicentric phase III RCT in DBD liver transplantation, which may establish the protective effects of machine perfusion in liver transplantation.

REFERENCES

DISCUSSANTS

A. Pinna (Bologna, Italy):

The study performed by the group from Professor Clavien shows that extracorporeal perfusion with oxygenated hypothermic solution reduces graft injury in DCD liver grafts compared to static cold preservation. The decrease of the postperfusion liver injury of such treated grafts is dramatically evident with better graft survival at 1 year of the treated DCD liver grafts compared with the DCD liver grafts not treated with the HOPE technique. The study, however, raised several questions. First, a possible major limitation of the study is the comparison made among transplants performed in different centers at different time periods. Is this a concern in the evaluation of the results? Second, can the authors better explain whether the advantage of HOPE was due to the liver perfusion or from the oxygenation of the perfusate? Third, do the authors think that there is a difference according to the use of different solutions among the 3 centers? Finally, can the authors clarify if they used or not thrombolytic treatment of the liver grafts after retrieval in any arm of the study? This is a well-conducted study full of HOPE for the future.

Response From P. Dutkowski (Zurich, Switzerland):

Thank you Professor Pinna for your valuable comments and questions. We agree that there are differences among the centers in terms of the transplant technique, surgeons, preservation solutions, and time periods. Despite that, outcome in the brain dead (DBD) liver grafts, that is, control groups, was identical in Zurich, Rotterdam, and Birmingham. Therefore, we assume that constitutional variations are rather unlikely to have a major effect on graft outcome. Centers have differences in terms of warm ischemia periods and biliary complications, for example, the rate of intrahepatic cholangiopathy is low in Birmingham with 85% 1-year graft survival, but asystolic warm ischemia time is generally short. Although a center comparison was not the aim of this study, we opted to search for best matches in terms of key confounders including warm ischemia periods. Based on this analysis, we believe that HOPE significantly contributes to the observed effects of decreased injury in HOPE-treated DCD livers in contrast to unperfused DCD livers.

Next, we are convinced that the effects of HOPE depends on the oxygenation of the perfusate, as demonstrated in recent experimental studies in pig livers published recently by our group. Furthermore, experimental studies with gaseous oxygenation without any perfusate also showed a protective effect. Based on this, we currently regard hyperbaric oxygen as the key compound in the HOPE procedure. Finally, no fibrinolytic agents have been used in this study in DCD patients.

T. van Gulik (Amsterdam, The Netherlands):

It is very important that you could show that, contrarily to many beliefs, rescue of the biliary system does not need separate perfusion of the hepatic artery. You succeeded to obtain sufficiently high oxygen saturation by perfusion of the portal vein only. We can now get rid of the technical problems of dual perfusion including the hepatic artery. There are also interesting reports showing that subnormothermic perfusion of the liver is also protected probably through the same pathway. If you combine hyperoxygenation with slightly higher temperature than hypothermic, then the effects might even be greater although difficult to show because your results are already very impressive.
Response From P. Dutkowski (Zurich, Switzerland):
The ideal temperature for machine liver perfusion remains currently unclear. It might be 10°C, 15°C, or even 20°C, as you suggested. We believe, however, that the protective key mechanism relies on a reversible downregulation of mitochondrial electron transfer, which best occurs at low temperatures. Future studies are needed to unravel this issue.

R. Adam (Paris, France):
We want to go a step forward and see now what may happen using HOPE for DBD donors. This is the case in my country because we still have few DCD donors. I know that you are now proposing a prospective randomized study and we will be very keen to participate in it. Do you think that we should be open to this study to all liver grafts, including those without any risk factor, or should we reserve our focus to risky grafts in a way to have a higher chance to demonstrate differences between HOPE and no HOPE treatment?

Response From P. Dutkowski (Zurich, Switzerland):
The benefit of HOPE or other machine perfusion techniques is probably higher in preinjured liver grafts. Therefore, inclusion of too many standard livers in the randomized trial may show less beneficial effects. As the number of accepted and implanted extended criteria liver grafts is increasing everywhere, we would, however, keep at the moment the trial design omitting any selection.