Header

UZH-Logo

Maintenance Infos

Evaluation of multiband EPI acquisitions for resting state fMRI


Preibisch, Christine; Castrillón G, J Gabriel; Bührer, Martin; Riedl, Valentin (2015). Evaluation of multiband EPI acquisitions for resting state fMRI. PLoS ONE, 10(9):e0136961.

Abstract

Functional magnetic resonance imaging (fMRI) and particularly resting state fMRI (rs-fMRI) is widely used to investigate resting state brain networks (RSNs) on the systems level. Echo planar imaging (EPI) is the state-of-the-art imaging technique for most fMRI studies. Therefore, improvements of EPI might lead to increased sensitivity for a large amount of studies performed every day. A number of developments to shorten acquisition time have been recently proposed and the multiband technique, allowing the simultaneous acquisition of multiple slices yielding an equivalent reduction of measurement time, is the most promising among them. While the prospect to significantly reduce acquisition time by means of high multiband acceleration factors (M) appears tempting, signal quality parameters and the sensitivity to detect common RSNs with increasing M-factor have only been partially investigated up to now. In this study, we therefore acquired rs-fMRI data from 20 healthy volunteers to systematically investigate signal characteristics and sensitivity for brain network activity in datasets with increasing M-factor, M = 2 - 4. Combined with an inplane, sensitivity encoding (SENSE), acceleration factor, S = 2, we applied a maximal acceleration factor of 8 (S2×M4). Our results suggest that an M-factor of 2 (total acceleration of 4) only causes negligible SNR decrease but reveals common RSN with increased sensitivity and stability. Further M-factor increase produced random artifacts as revealed by signal quality measures that may affect interpretation of RSNs under common scanning conditions. Given appropriate hardware, a mb-EPI sequence with a total acceleration of 4 significantly reduces overall scanning time and clearly increases sensitivity to detect common RSNs. Together, our results suggest mb-EPI at moderate acceleration factors as a novel standard for fMRI that might increase our understanding of network dynamics in healthy and diseased brains.

Abstract

Functional magnetic resonance imaging (fMRI) and particularly resting state fMRI (rs-fMRI) is widely used to investigate resting state brain networks (RSNs) on the systems level. Echo planar imaging (EPI) is the state-of-the-art imaging technique for most fMRI studies. Therefore, improvements of EPI might lead to increased sensitivity for a large amount of studies performed every day. A number of developments to shorten acquisition time have been recently proposed and the multiband technique, allowing the simultaneous acquisition of multiple slices yielding an equivalent reduction of measurement time, is the most promising among them. While the prospect to significantly reduce acquisition time by means of high multiband acceleration factors (M) appears tempting, signal quality parameters and the sensitivity to detect common RSNs with increasing M-factor have only been partially investigated up to now. In this study, we therefore acquired rs-fMRI data from 20 healthy volunteers to systematically investigate signal characteristics and sensitivity for brain network activity in datasets with increasing M-factor, M = 2 - 4. Combined with an inplane, sensitivity encoding (SENSE), acceleration factor, S = 2, we applied a maximal acceleration factor of 8 (S2×M4). Our results suggest that an M-factor of 2 (total acceleration of 4) only causes negligible SNR decrease but reveals common RSN with increased sensitivity and stability. Further M-factor increase produced random artifacts as revealed by signal quality measures that may affect interpretation of RSNs under common scanning conditions. Given appropriate hardware, a mb-EPI sequence with a total acceleration of 4 significantly reduces overall scanning time and clearly increases sensitivity to detect common RSNs. Together, our results suggest mb-EPI at moderate acceleration factors as a novel standard for fMRI that might increase our understanding of network dynamics in healthy and diseased brains.

Statistics

Citations

Dimensions.ai Metrics
9 citations in Web of Science®
10 citations in Scopus®
12 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

22 downloads since deposited on 21 Jan 2016
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:21 Jan 2016 11:47
Last Modified:14 Feb 2018 10:43
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0136961
PubMed ID:26375666

Download

Download PDF  'Evaluation of multiband EPI acquisitions for resting state fMRI'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)