Header

UZH-Logo

Maintenance Infos

Transcranial stimulation over the dorsolateral prefrontal cortex increases the impact of past expenses on decision-making


Bogdanov, Mario; Ruff, Christian C; Schwabe, Lars (2015). Transcranial stimulation over the dorsolateral prefrontal cortex increases the impact of past expenses on decision-making. Cerebral Cortex:Epub ahead of print.

Abstract

Goal-directed choices should be guided by the expected value of the available options. However, people are often influenced by past costs in their decisions, thus succumbing to a bias known as the “sunk-cost effect.” Recent functional magnetic resonance imaging data show that the sunk-cost effect is associated with increased activity in dorsolateral prefrontal cortex (dlPFC) and altered crosstalk of the dlPFC with other prefrontal areas. Are these correlated neural processes causally involved in the sunk-cost effect? Here, we employed transcranial direct current stimulation (tDCS) to examine the role of the dlPFC for biasing choices in line with the cost of past expenses. Specifically, we applied different types of tDCS over the right dlPFC while participants performed an investment task designed to assess the impact of past investments on current choices. Our results show a pronounced sunk-cost effect that was significantly increased by anodal tDCS, but left unaltered by cathodal or sham stimulation. Importantly, choices were not affected by stimulation when no prior investments had been made, underlining the specificity of the obtained effect. Our findings suggest a critical role of the dlPFC in the sunk-cost effect and thus elucidate neural mechanisms by which past investments may influence current decision-making.

Abstract

Goal-directed choices should be guided by the expected value of the available options. However, people are often influenced by past costs in their decisions, thus succumbing to a bias known as the “sunk-cost effect.” Recent functional magnetic resonance imaging data show that the sunk-cost effect is associated with increased activity in dorsolateral prefrontal cortex (dlPFC) and altered crosstalk of the dlPFC with other prefrontal areas. Are these correlated neural processes causally involved in the sunk-cost effect? Here, we employed transcranial direct current stimulation (tDCS) to examine the role of the dlPFC for biasing choices in line with the cost of past expenses. Specifically, we applied different types of tDCS over the right dlPFC while participants performed an investment task designed to assess the impact of past investments on current choices. Our results show a pronounced sunk-cost effect that was significantly increased by anodal tDCS, but left unaltered by cathodal or sham stimulation. Importantly, choices were not affected by stimulation when no prior investments had been made, underlining the specificity of the obtained effect. Our findings suggest a critical role of the dlPFC in the sunk-cost effect and thus elucidate neural mechanisms by which past investments may influence current decision-making.

Statistics

Citations

Altmetrics

Downloads

5 downloads since deposited on 01 Feb 2016
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
Dewey Decimal Classification:330 Economics
Language:English
Date:2015
Deposited On:01 Feb 2016 12:28
Last Modified:10 Dec 2016 01:00
Publisher:Oxford University Press
ISSN:1047-3211
Additional Information:This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Cerebral Cortex following peer review. The definitive publisher-authenticated version Cereb. Cortex (2015) is available online at: http://doi.org/10.1093/cercor/bhv298
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/cercor/bhv298

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 470kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations