Header

UZH-Logo

Maintenance Infos

Postsynaptic gephyrin clustering controls the development of adult-born granule cells in the olfactory bulb


Deprez, Francine; Pallotto, Marta; Vogt, Fabia; Grabiec, Marta; Virtanen, Mari A; Tyagarajan, Shiva K; Panzanelli, Patrizia; Fritschy, Jean-Marc (2015). Postsynaptic gephyrin clustering controls the development of adult-born granule cells in the olfactory bulb. Journal of Comparative Neurology, 523(13):1998-2016.

Abstract

In adult rodent olfactory bulb, GABAergic signaling regulates migration, differentiation, and synaptic integration of newborn granule cells (GCs), migrating from the subventricular zone. Here we show that these effects depend on the formation of a postsynaptic scaffold organized by gephyrin-the main scaffolding protein of GABAergic synapses, which anchors receptors and signaling molecules to the postsynaptic density-and are regulated by the phosphorylation status of gephyrin. Using lentiviral vectors to selectively transfect adult-born GCs, we observed that overexpression of the phospho-deficient gephyrin mutant eGFP-gephyrin(S270A), which facilitates the formation of supernumerary GABAergic synapses in vitro, favors dendritic branching and the formation of transient GABAergic synapses on spines, identified by the presence of α2-GABAA Rs. In contrast, overexpression of the dominant-negative eGFP-gephyrin(L2B) (a chimera that is enzymatically active but clustering defective), curtailed dendritic growth, spine formation, and long-term survival of GCs, pointing to the essential role of gephyrin cluster formation for its function. We could exclude any gephyrin overexpression artifacts, as GCs infected with eGFP-gephyrin were comparable to those infected with eGFP alone. The opposite effects induced by the two gephyrin mutant constructs indicate that the gephyrin scaffold at GABAergic synapses orchestrates signaling cascades acting on the cytoskeleton to regulate neuronal growth and synapse formation. Specifically, gephyrin phosphorylation emerges as a novel mechanism regulating morphological differentiation and long-term survival of adult-born olfactory bulb neurons.

Abstract

In adult rodent olfactory bulb, GABAergic signaling regulates migration, differentiation, and synaptic integration of newborn granule cells (GCs), migrating from the subventricular zone. Here we show that these effects depend on the formation of a postsynaptic scaffold organized by gephyrin-the main scaffolding protein of GABAergic synapses, which anchors receptors and signaling molecules to the postsynaptic density-and are regulated by the phosphorylation status of gephyrin. Using lentiviral vectors to selectively transfect adult-born GCs, we observed that overexpression of the phospho-deficient gephyrin mutant eGFP-gephyrin(S270A), which facilitates the formation of supernumerary GABAergic synapses in vitro, favors dendritic branching and the formation of transient GABAergic synapses on spines, identified by the presence of α2-GABAA Rs. In contrast, overexpression of the dominant-negative eGFP-gephyrin(L2B) (a chimera that is enzymatically active but clustering defective), curtailed dendritic growth, spine formation, and long-term survival of GCs, pointing to the essential role of gephyrin cluster formation for its function. We could exclude any gephyrin overexpression artifacts, as GCs infected with eGFP-gephyrin were comparable to those infected with eGFP alone. The opposite effects induced by the two gephyrin mutant constructs indicate that the gephyrin scaffold at GABAergic synapses orchestrates signaling cascades acting on the cytoskeleton to regulate neuronal growth and synapse formation. Specifically, gephyrin phosphorylation emerges as a novel mechanism regulating morphological differentiation and long-term survival of adult-born olfactory bulb neurons.

Statistics

Citations

2 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

16 downloads since deposited on 03 Feb 2016
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 September 2015
Deposited On:03 Feb 2016 10:08
Last Modified:20 Jul 2016 00:00
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0021-9967
Additional Information:This is the peer reviewed version of the following article: Journal of Comparative Neurology, Volume 523, Issue 13, pages 1998–2016, 1 September 2015, which has been published in final form at http://doi.org/10.1002/cne.23776. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms).
Publisher DOI:https://doi.org/10.1002/cne.23776
PubMed ID:25772192

Download

Download PDF  'Postsynaptic gephyrin clustering controls the development of adult-born granule cells in the olfactory bulb'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 6MB
View at publisher