Header

UZH-Logo

Maintenance Infos

Significance of GABA(A) receptor heterogeneity: clues from developing neurons


Fritschy, Jean-Marc (2015). Significance of GABA(A) receptor heterogeneity: clues from developing neurons. In: Hardwick, James P. Cytochrome P450 Function and Pharmacological Roles in Inflammation and Cancer. Amsterdam: Elsevier, 13-39.

Abstract

Briefly after the landmark discovery by Hanns Möhler that GABA(A) receptors (GABA(A)R) are the site of action of benzodiazepine site ligands, their distribution in the rodent CNS during development was mapped by autoradiography, demonstrating early and widespread expression of GABA(A)R in the brain and spinal cord. Ten years later, the first studies using subunit-specific antibodies revealed unsuspected heterogeneity in the subunit composition of GABA(A)R in developing brain, with striking regional specificity and rapid changes in expression and subcellular localization correlating with the maturation of neuronal circuits. These data contributed to the wealth of evidence that GABAergic neurotransmission, acting both synaptically and extrasynaptically, modulates major steps of neuronal development (proliferation, migration, differentiation, and circuit formation). In immature neurons, GABA(A)R activation leads to neuronal depolarization and activation of Ca(2+) signals, which mediate many of the developmental effects of GABA. Therefore, GABA(A)R heterogeneity might be essential to fine-tune GABA actions in the dynamics of CNS maturation. Furthermore, since a disturbance of GABAergic function during ontogeny can potentially affect many aspects of CNS maturation and contribute to the etiology of major brain disorders, GABA(A)R heterogeneity provides a substrate for the development of a tailored pharmacology targeting specific receptor subtypes. This chapter provides a brief overview of these issues with a special focus on the seminal contributions of Hanns Möhler to the emergence of these concepts of fundamental relevance in today's neuroscience research and pharmacological developments.

Abstract

Briefly after the landmark discovery by Hanns Möhler that GABA(A) receptors (GABA(A)R) are the site of action of benzodiazepine site ligands, their distribution in the rodent CNS during development was mapped by autoradiography, demonstrating early and widespread expression of GABA(A)R in the brain and spinal cord. Ten years later, the first studies using subunit-specific antibodies revealed unsuspected heterogeneity in the subunit composition of GABA(A)R in developing brain, with striking regional specificity and rapid changes in expression and subcellular localization correlating with the maturation of neuronal circuits. These data contributed to the wealth of evidence that GABAergic neurotransmission, acting both synaptically and extrasynaptically, modulates major steps of neuronal development (proliferation, migration, differentiation, and circuit formation). In immature neurons, GABA(A)R activation leads to neuronal depolarization and activation of Ca(2+) signals, which mediate many of the developmental effects of GABA. Therefore, GABA(A)R heterogeneity might be essential to fine-tune GABA actions in the dynamics of CNS maturation. Furthermore, since a disturbance of GABAergic function during ontogeny can potentially affect many aspects of CNS maturation and contribute to the etiology of major brain disorders, GABA(A)R heterogeneity provides a substrate for the development of a tailored pharmacology targeting specific receptor subtypes. This chapter provides a brief overview of these issues with a special focus on the seminal contributions of Hanns Möhler to the emergence of these concepts of fundamental relevance in today's neuroscience research and pharmacological developments.

Statistics

Citations

Altmetrics

Downloads

2 downloads since deposited on 03 Feb 2016
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:14 January 2015
Deposited On:03 Feb 2016 10:06
Last Modified:05 Apr 2016 19:57
Publisher:Elsevier
Series Name:Advances in Pharmacology
Number:74
ISSN:1054-3589
Publisher DOI:https://doi.org/10.1016/bs.apha.2014.11.006
PubMed ID:25637436

Download