Header

UZH-Logo

Maintenance Infos

Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart


von Deuster, Constantin; Stoeck, Christian T; Genet, Martin; Atkinson, David; Kozerke, Sebastian (2016). Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart. Magnetic Resonance in Medicine, 76(3):862-872.

Abstract

PURPOSE: To compare signal-to-noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration-compensated spin-echo (SE) and stimulated echo acquisition mode (STEAM) imaging.
METHODS: Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50-450 s/mm2 ) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles.
RESULTS: In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt (SE/STEAM), was 2.84 ± 0.08 for all tested b-values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b-value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM.
CONCLUSION: Cardiac DTI using motion-compensated SE yields a 2.3-2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

Abstract

PURPOSE: To compare signal-to-noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration-compensated spin-echo (SE) and stimulated echo acquisition mode (STEAM) imaging.
METHODS: Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50-450 s/mm2 ) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles.
RESULTS: In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt (SE/STEAM), was 2.84 ± 0.08 for all tested b-values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b-value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM.
CONCLUSION: Cardiac DTI using motion-compensated SE yields a 2.3-2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

Statistics

Citations

5 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 03 Feb 2016
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2016
Deposited On:03 Feb 2016 15:07
Last Modified:08 Dec 2017 17:39
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0740-3194
Publisher DOI:https://doi.org/10.1002/mrm.25998
PubMed ID:26445426

Download