Header

UZH-Logo

Maintenance Infos

Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth


Thiede-Stan, Nina K; Schwab, Martin E (2015). Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth. Journal of Cell Science, 128(14):2403-2414.

Abstract

In the nervous system, attractive and repulsive factors guide neuronal growth, pathfinding and target innervation during development, learning and regeneration after injury. Repulsive and growth-inhibitory factors, such as some ephrins, semaphorins, netrins and myelin-associated growth inhibitors, restrict nerve fiber growth, whereas neurotrophins, and other ephrins, semaphorins and netrins attract fibers and promote neurite growth. Several of these guidance molecules also play crucial roles in vasculogenesis, and regulate cell migration and tissue formation in different organs. Precise and highly specific signal transduction in space and time is required in all these cases, which primarily depends on the presence and function of specific receptors. Interestingly, many of these ligands act through multi-subunit receptor complexes. In this Commentary, we review the current knowledge of how complexes of the receptors for attractive and repulsive neurite growth regulatory factors are reorganized in a spatial and temporal manner, and reveal the implications that such dynamics have on the signaling events that coordinate neurite fiber growth.

Abstract

In the nervous system, attractive and repulsive factors guide neuronal growth, pathfinding and target innervation during development, learning and regeneration after injury. Repulsive and growth-inhibitory factors, such as some ephrins, semaphorins, netrins and myelin-associated growth inhibitors, restrict nerve fiber growth, whereas neurotrophins, and other ephrins, semaphorins and netrins attract fibers and promote neurite growth. Several of these guidance molecules also play crucial roles in vasculogenesis, and regulate cell migration and tissue formation in different organs. Precise and highly specific signal transduction in space and time is required in all these cases, which primarily depends on the presence and function of specific receptors. Interestingly, many of these ligands act through multi-subunit receptor complexes. In this Commentary, we review the current knowledge of how complexes of the receptors for attractive and repulsive neurite growth regulatory factors are reorganized in a spatial and temporal manner, and reveal the implications that such dynamics have on the signaling events that coordinate neurite fiber growth.

Statistics

Citations

9 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

11 downloads since deposited on 05 Feb 2016
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:15 July 2015
Deposited On:05 Feb 2016 11:28
Last Modified:08 Dec 2017 17:50
Publisher:The Company of Biologists
ISSN:0021-9533
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1242/jcs.165555
PubMed ID:26116576

Download

Download PDF  'Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher