Header

UZH-Logo

Maintenance Infos

Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands


Portevin, Damien; Pflüger, Valentin; Otieno, Patricia; Brunisholz, René; Vogel, Guido; Daubenberger, Claudia (2015). Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands. BMC Biotechnology, 15(24):online.

Abstract

BACKGROUND: Conventionally, human monocyte sub-populations are classified according to surface marker expression into classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)) and non-classical (CD14(+)CD16(++)) lineages. The involvement of non-classical monocytes, also referred to as proinflammatory monocytes, in the pathophysiology of diseases including diabetes mellitus, atherosclerosis or Alzheimer's disease is well recognized. The development of novel high-throughput methods to capture functional states within the different monocyte lineages at the whole cell proteomic level will enable real time monitoring of disease states.
RESULTS: We isolated and characterized (pan-) monocytes, mostly composed of classical CD16(-) monocytes, versus autologous CD16(+) subpopulations from the blood of healthy human donors (n = 8) and compared their inflammatory properties in response to lipopolysaccharides and M.tuberculosis antigens by multiplex cytokine profiling. Following resting and in vitro antigenic stimulation, cells were recovered and subjected to whole-cell mass spectrometry analysis. This approach identified the specific presence/absence of m/z peaks and therefore potential biomarkers that can discriminate pan-monocytes from their CD16 counterparts. Furthermore, we found that semi-quantitative data analysis could capture the subtle proteome changes occurring upon microbial stimulation that differentiate resting, from lipopolysaccharides or M. tuberculosis stimulated monocytic samples.
CONCLUSIONS: Whole-cell mass spectrometry fingerprinting could efficiently distinguish monocytic sub-populations that arose from a same hematopoietic lineage. We also demonstrate for the first time that mass spectrometry signatures can monitor semi-quantitatively specific activation status in response to exogenous stimulation. As such, this approach stands as a fast and efficient method for the applied immunology field to assess the reactivity of potentially any immune cell types that may sustain health or promote related inflammatory diseases.

Abstract

BACKGROUND: Conventionally, human monocyte sub-populations are classified according to surface marker expression into classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)) and non-classical (CD14(+)CD16(++)) lineages. The involvement of non-classical monocytes, also referred to as proinflammatory monocytes, in the pathophysiology of diseases including diabetes mellitus, atherosclerosis or Alzheimer's disease is well recognized. The development of novel high-throughput methods to capture functional states within the different monocyte lineages at the whole cell proteomic level will enable real time monitoring of disease states.
RESULTS: We isolated and characterized (pan-) monocytes, mostly composed of classical CD16(-) monocytes, versus autologous CD16(+) subpopulations from the blood of healthy human donors (n = 8) and compared their inflammatory properties in response to lipopolysaccharides and M.tuberculosis antigens by multiplex cytokine profiling. Following resting and in vitro antigenic stimulation, cells were recovered and subjected to whole-cell mass spectrometry analysis. This approach identified the specific presence/absence of m/z peaks and therefore potential biomarkers that can discriminate pan-monocytes from their CD16 counterparts. Furthermore, we found that semi-quantitative data analysis could capture the subtle proteome changes occurring upon microbial stimulation that differentiate resting, from lipopolysaccharides or M. tuberculosis stimulated monocytic samples.
CONCLUSIONS: Whole-cell mass spectrometry fingerprinting could efficiently distinguish monocytic sub-populations that arose from a same hematopoietic lineage. We also demonstrate for the first time that mass spectrometry signatures can monitor semi-quantitatively specific activation status in response to exogenous stimulation. As such, this approach stands as a fast and efficient method for the applied immunology field to assess the reactivity of potentially any immune cell types that may sustain health or promote related inflammatory diseases.

Statistics

Citations

4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 21 Jan 2016
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2015
Deposited On:21 Jan 2016 13:40
Last Modified:21 Aug 2017 10:40
Publisher:BioMed Central
ISSN:1472-6750
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12896-015-0140-1
PubMed ID:25887592

Download

Download PDF  'Quantitative whole-cell MALDI-TOF MS fingerprints distinguishes human monocyte sub-populations activated by distinct microbial ligands'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)