Header

UZH-Logo

Maintenance Infos

Relative contribution of biological variation and technical variables to zone diameter variations of disc diffusion susceptibility testing


Hombach, Michael; Ochoa, Carlos; Maurer, Florian P; Pfiffner, Tamara; Böttger, Erik C; Furrer, Reinhard (2016). Relative contribution of biological variation and technical variables to zone diameter variations of disc diffusion susceptibility testing. Journal of Antimicrobial Chemotherapy, 71(1):141-151.

Abstract

OBJECTIVES Disc diffusion is still largely based on manual procedures. Technical variations originate from inoculum preparation, variations in materials, individual operator plate streaking and reading accuracy. Resulting measurement imprecision contributes to categorization errors. Biological variation resembles the natural fluctuation of a measured parameter such as antibiotic susceptibility around a mean value. It is deemed to originate from factors such as genetic background or metabolic state. This study analysed the relative contribution of different technical and biological factors to total disc diffusion variation. METHODS For calculation of relative error factor contribution to disc diffusion variability, five experiments were designed keeping different combinations of error factors constant. A mathematical model was developed to analyse the individual error factor contribution to disc diffusion variation for each of the tested drug-species combinations. RESULTS The contribution of biological variation to total diameter variance ranged from 10.4% to 98.8% for different drug-species combinations. Highest biological variation was found for Enterococcus faecalis WT and vancomycin (98.8%) and for penicillinase-producing Staphylococcus aureus and penicillin G (96.0%). Average imprecision of automated zone reading revealed that 1.4%-5.3% of total imprecision was due to technical variation, while materials, i.e. antibiotic discs and agar plates, contributed between 2.6% and 3.9%. Inoculum preparation and manual plate streaking contributed 6.8%-24.8% and 6.6%-24.3%, respectively, to total imprecision. CONCLUSIONS This study illustrates the relative contributions of technical factors that account for a significant part of total variance in disc diffusion. The highest relative contribution originated from the operator, i.e. manual inoculum preparation and plate streaking. Further standardization of inoculum preparation and plate streaking by automation could potentially increase the precision of disc diffusion and improve the correlation of susceptibility reports with clinical outcome.

Abstract

OBJECTIVES Disc diffusion is still largely based on manual procedures. Technical variations originate from inoculum preparation, variations in materials, individual operator plate streaking and reading accuracy. Resulting measurement imprecision contributes to categorization errors. Biological variation resembles the natural fluctuation of a measured parameter such as antibiotic susceptibility around a mean value. It is deemed to originate from factors such as genetic background or metabolic state. This study analysed the relative contribution of different technical and biological factors to total disc diffusion variation. METHODS For calculation of relative error factor contribution to disc diffusion variability, five experiments were designed keeping different combinations of error factors constant. A mathematical model was developed to analyse the individual error factor contribution to disc diffusion variation for each of the tested drug-species combinations. RESULTS The contribution of biological variation to total diameter variance ranged from 10.4% to 98.8% for different drug-species combinations. Highest biological variation was found for Enterococcus faecalis WT and vancomycin (98.8%) and for penicillinase-producing Staphylococcus aureus and penicillin G (96.0%). Average imprecision of automated zone reading revealed that 1.4%-5.3% of total imprecision was due to technical variation, while materials, i.e. antibiotic discs and agar plates, contributed between 2.6% and 3.9%. Inoculum preparation and manual plate streaking contributed 6.8%-24.8% and 6.6%-24.3%, respectively, to total imprecision. CONCLUSIONS This study illustrates the relative contributions of technical factors that account for a significant part of total variance in disc diffusion. The highest relative contribution originated from the operator, i.e. manual inoculum preparation and plate streaking. Further standardization of inoculum preparation and plate streaking by automation could potentially increase the precision of disc diffusion and improve the correlation of susceptibility reports with clinical outcome.

Statistics

Citations

3 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:January 2016
Deposited On:05 Feb 2016 08:42
Last Modified:05 Apr 2016 20:00
Publisher:Oxford University Press
ISSN:0305-7453
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/jac/dkv309
PubMed ID:26462987

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations