Header

UZH-Logo

Maintenance Infos

Aortic annulus stabilization technique for rapid deployment aortic valve replacement


Ferrari, Enrico; Siniscalchi, Giuseppe; Tozzi, Piergiorgio; von Segesser, Ludwig (2015). Aortic annulus stabilization technique for rapid deployment aortic valve replacement. Innovations : Technology And Techniques In Cardiothoracic And Vascular Surgery, 10(5):360-362.

Abstract

Rapid deployment aortic valve replacement (RDAVR) with the use of rapid deployment valve systems represents a smart alternative to the use of standard aortic bioprosthesis for aortic valve replacement. Nevertheless, its use is still debatable in patients with pure aortic valve regurgitation or true bicuspid aortic valve because of the risk of postoperative paravalvular leak. To address this issue, an optimal annulus-valve size match seems to be the ideal surgical strategy. This article describes a new technique developed to stabilize the aortic annulus and prevent paravalvular leak after RDAVR. To confirm the feasibility, this technique was performed in six patients with severe symptomatic aortic stenosis who were scheduled to undergo aortic valve replacement at our center. All patients survived surgery and were discharged from the hospital. There were no new intracardiac conduction system disturbances observed, and a permanent pacemaker implantation was not required in any of the patients. The intraoperative and postoperative echocardiogram confirmed successful positioning of the valve, and no paravalvular leak was observed. In this preliminary experience, RDAVR through a full sternotomy or an upper hemisternotomy approach with the use of aortic annulus stabilization technique was safe, and no leak was observed. Future studies on large series of patients are necessary to confirm the safety and effectiveness of this technique in preventing paravalvular leak in patients with true bicuspid aortic valves or pure aortic regurgitation.

Abstract

Rapid deployment aortic valve replacement (RDAVR) with the use of rapid deployment valve systems represents a smart alternative to the use of standard aortic bioprosthesis for aortic valve replacement. Nevertheless, its use is still debatable in patients with pure aortic valve regurgitation or true bicuspid aortic valve because of the risk of postoperative paravalvular leak. To address this issue, an optimal annulus-valve size match seems to be the ideal surgical strategy. This article describes a new technique developed to stabilize the aortic annulus and prevent paravalvular leak after RDAVR. To confirm the feasibility, this technique was performed in six patients with severe symptomatic aortic stenosis who were scheduled to undergo aortic valve replacement at our center. All patients survived surgery and were discharged from the hospital. There were no new intracardiac conduction system disturbances observed, and a permanent pacemaker implantation was not required in any of the patients. The intraoperative and postoperative echocardiogram confirmed successful positioning of the valve, and no paravalvular leak was observed. In this preliminary experience, RDAVR through a full sternotomy or an upper hemisternotomy approach with the use of aortic annulus stabilization technique was safe, and no leak was observed. Future studies on large series of patients are necessary to confirm the safety and effectiveness of this technique in preventing paravalvular leak in patients with true bicuspid aortic valves or pure aortic regurgitation.

Statistics

Altmetrics

Downloads

8 downloads since deposited on 01 Feb 2016
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Cardiocentro Ticino
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:December 2015
Deposited On:01 Feb 2016 15:31
Last Modified:01 Nov 2016 01:01
Publisher:Lippincott Williams & Wilkins
ISSN:1556-9845
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1097/IMI.0000000000000192
PubMed ID:26575385

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 217kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations