Header

UZH-Logo

Maintenance Infos

Osteocyte lacunar properties in rat cortical bone: Differences between lamellar and central bone


Bach-Gansmo, Fiona Linnea; Weaver, James C; Jensen, Mads Hartmann; Leemreize, Hanna; Mader, Kevin Scott; Stampanoni, Marco; Brüel, Annemarie; Thomsen, Jesper Skovhus; Birkedal, Henrik (2015). Osteocyte lacunar properties in rat cortical bone: Differences between lamellar and central bone. Journal of Structural Biology, 191(1):59-67.

Abstract

Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected to osteocyte function, osteocyte lacunar properties such as volume, shape, orientation, and density are now frequently reported in studies investigating osteocyte activity. Despite this increasing interest in lacunar morphometrics, many studies show a large spread in such values, suggesting a large inter-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values were observed. The 3D nature of the SR μCT data sets furthermore revealed that lacunae in central bone, which appear to be poorly aligned in transverse 2D cross sections, are in fact highly aligned along the bone long axis. These results demonstrate the importance of using 3D methods to investigate anisotropic biological materials such as bone and that the appropriate choice of subregions for high resolution imaging is not trivial.

Abstract

Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected to osteocyte function, osteocyte lacunar properties such as volume, shape, orientation, and density are now frequently reported in studies investigating osteocyte activity. Despite this increasing interest in lacunar morphometrics, many studies show a large spread in such values, suggesting a large inter-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values were observed. The 3D nature of the SR μCT data sets furthermore revealed that lacunae in central bone, which appear to be poorly aligned in transverse 2D cross sections, are in fact highly aligned along the bone long axis. These results demonstrate the importance of using 3D methods to investigate anisotropic biological materials such as bone and that the appropriate choice of subregions for high resolution imaging is not trivial.

Statistics

Citations

11 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:09 Feb 2016 10:28
Last Modified:08 Dec 2017 17:59
Publisher:Elsevier
ISSN:1047-8477
Publisher DOI:https://doi.org/10.1016/j.jsb.2015.05.005
PubMed ID:26023043

Download

Full text not available from this repository.
View at publisher