Header

UZH-Logo

Maintenance Infos

High-throughput phenotyping and genetic linkage of cortical bone microstructure in the mouse


Mader, Kevin S; Donahue, Leah Rae; Müller, Ralph; Stampanoni, Marco (2015). High-throughput phenotyping and genetic linkage of cortical bone microstructure in the mouse. BMC Genomics, 16(493):online.

Abstract

BACKGROUND: Understanding cellular structure and organization, which plays an important role in biological systems ranging from mechanosensation to neural organization, is a complicated multifactorial problem depending on genetics, environmental factors, and stochastic processes. Isolating these factors necessitates the measurement and sensitive quantification of many samples in a reliable, high-throughput, unbiased manner. In this manuscript we present a pipelined approach using a fully automated framework based on Synchrotron-based X-ray Tomographic Microscopy (SRXTM) for performing a full 3D characterization of millions of substructures.
RESULTS: We demonstrate the framework on a genetic study on the femur bones of in-bred mice. We measured 1300 femurs from a F2 cross experiment in mice without the growth hormone (which can confound many of the smaller structural differences between strains) and characterized more than 50 million osteocyte lacunae (cell-sized hollows in the bone). The results were then correlated with genetic markers in a process called quantitative trait localization (QTL). Our findings provide a mapping between regions of the genome (all 19 autosomes) and observable phenotypes which could explain between 8-40 % of the variance using between 2-10 loci for each trait. This map shows 4 areas of overlap with previous studies looking at bone strength and 3 areas not previously associated with bone.
CONCLUSIONS: The mapping of microstructural phenotypes provides a starting point for both structure-function and genetic studies on murine bone structure and the specific loci can be investigated in more detail to identify single gene candidates which can then be translated to human investigations. The flexible infrastructure offers a full spectrum of shape, distribution, and connectivity metrics for cellular networks and can be adapted to a wide variety of materials ranging from plant roots to lung tissue in studies requiring high sample counts and sensitive metrics such as the drug-gene interactions and high-throughput screening.

Abstract

BACKGROUND: Understanding cellular structure and organization, which plays an important role in biological systems ranging from mechanosensation to neural organization, is a complicated multifactorial problem depending on genetics, environmental factors, and stochastic processes. Isolating these factors necessitates the measurement and sensitive quantification of many samples in a reliable, high-throughput, unbiased manner. In this manuscript we present a pipelined approach using a fully automated framework based on Synchrotron-based X-ray Tomographic Microscopy (SRXTM) for performing a full 3D characterization of millions of substructures.
RESULTS: We demonstrate the framework on a genetic study on the femur bones of in-bred mice. We measured 1300 femurs from a F2 cross experiment in mice without the growth hormone (which can confound many of the smaller structural differences between strains) and characterized more than 50 million osteocyte lacunae (cell-sized hollows in the bone). The results were then correlated with genetic markers in a process called quantitative trait localization (QTL). Our findings provide a mapping between regions of the genome (all 19 autosomes) and observable phenotypes which could explain between 8-40 % of the variance using between 2-10 loci for each trait. This map shows 4 areas of overlap with previous studies looking at bone strength and 3 areas not previously associated with bone.
CONCLUSIONS: The mapping of microstructural phenotypes provides a starting point for both structure-function and genetic studies on murine bone structure and the specific loci can be investigated in more detail to identify single gene candidates which can then be translated to human investigations. The flexible infrastructure offers a full spectrum of shape, distribution, and connectivity metrics for cellular networks and can be adapted to a wide variety of materials ranging from plant roots to lung tissue in studies requiring high sample counts and sensitive metrics such as the drug-gene interactions and high-throughput screening.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

10 downloads since deposited on 08 Feb 2016
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:08 Feb 2016 14:22
Last Modified:08 Dec 2017 17:59
Publisher:BioMed Central
ISSN:1471-2164
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12864-015-1617-y
PubMed ID:26138817

Download

Download PDF  'High-throughput phenotyping and genetic linkage of cortical bone microstructure in the mouse'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)