Header

UZH-Logo

Maintenance Infos

Quantitative volumetric breast density estimation using phase contrast mammography


Wang, Zhentian; Hauser, Nik; Kubik-Huch, Rahel A; D’Isidoro, Fabio; Stampanoni, Marco (2015). Quantitative volumetric breast density estimation using phase contrast mammography. Physics in Medicine and Biology, 60(10):4123-4135.

Abstract

Phase contrast mammography using a grating interferometer is an emerging technology for breast imaging. It provides complementary information to the conventional absorption-based methods. Additional diagnostic values could be further obtained by retrieving quantitative information from the three physical signals (absorption, differential phase and small-angle scattering) yielded simultaneously. We report a non-parametric quantitative volumetric breast density estimation method by exploiting the ratio (dubbed the R value) of the absorption signal to the small-angle scattering signal. The R value is used to determine breast composition and the volumetric breast density (VBD) of the whole breast is obtained analytically by deducing the relationship between the R value and the pixel-wise breast density. The proposed method is tested by a phantom study and a group of 27 mastectomy samples. In the clinical evaluation, the estimated VBD values from both cranio-caudal (CC) and anterior-posterior (AP) views are compared with the ACR scores given by radiologists to the pre-surgical mammograms. The results show that the estimated VBD results using the proposed method are consistent with the pre-surgical ACR scores, indicating the effectiveness of this method in breast density estimation. A positive correlation is found between the estimated VBD and the diagnostic ACR score for both the CC view (p = 0.033) and AP view (p = 0.001). A linear regression between the results of the CC view and AP view showed a correlation coefficient γ = 0.77, which indicates the robustness of the proposed method and the quantitative character of the additional information obtained with our approach.

Abstract

Phase contrast mammography using a grating interferometer is an emerging technology for breast imaging. It provides complementary information to the conventional absorption-based methods. Additional diagnostic values could be further obtained by retrieving quantitative information from the three physical signals (absorption, differential phase and small-angle scattering) yielded simultaneously. We report a non-parametric quantitative volumetric breast density estimation method by exploiting the ratio (dubbed the R value) of the absorption signal to the small-angle scattering signal. The R value is used to determine breast composition and the volumetric breast density (VBD) of the whole breast is obtained analytically by deducing the relationship between the R value and the pixel-wise breast density. The proposed method is tested by a phantom study and a group of 27 mastectomy samples. In the clinical evaluation, the estimated VBD values from both cranio-caudal (CC) and anterior-posterior (AP) views are compared with the ACR scores given by radiologists to the pre-surgical mammograms. The results show that the estimated VBD results using the proposed method are consistent with the pre-surgical ACR scores, indicating the effectiveness of this method in breast density estimation. A positive correlation is found between the estimated VBD and the diagnostic ACR score for both the CC view (p = 0.033) and AP view (p = 0.001). A linear regression between the results of the CC view and AP view showed a correlation coefficient γ = 0.77, which indicates the robustness of the proposed method and the quantitative character of the additional information obtained with our approach.

Statistics

Citations

4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2015
Deposited On:08 Feb 2016 15:29
Last Modified:05 Apr 2016 20:00
Publisher:IOP Publishing
ISSN:0031-9155
Publisher DOI:https://doi.org/10.1088/0031-9155/60/10/4123
PubMed ID:25933258

Download

Full text not available from this repository.
View at publisher