Header

UZH-Logo

Maintenance Infos

Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep


Huber, R; Määttä, S; Esser, S K; Sarasso, S; Ferrarelli, F; Watson, A; Ferreri, F; Peterson, M J; Tononi, G (2008). Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. Journal of Neuroscience, 28(31):7911-7918.

Abstract

Sleep slow-wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the previous time awake and decreasing during sleep, although the underlying mechanisms are unclear. Recent studies have shown that procedures presumably leading to local plastic changes in the cerebral cortex can lead to local changes in SWA during subsequent sleep. To further investigate the connection between cortical plasticity and sleep SWA, in this study we used a paired associative stimulation (PAS) protocol, in which median nerve stimuli were followed at different intervals (25 or 10 ms) by transcranial magnetic stimulation (TMS) pulses to the contralateral cortical hand area. As expected, such a protocol led to a sustained increase (long-term potentiation-like) or decrease (long-term depression-like) of cortical excitability as measured by motor evoked potentials. By using a TMS-compatible high-density electroencephalographic (EEG) system, we also found that, in individual subjects, TMS-evoked cortical responses over sensorimotor cortex changed with different interstimulus intervals. Moreover, during subsequent sleep, SWA increased locally in subjects whose TMS-evoked cortical responses had increased after PAS, and decreased in subjects whose cortical responses had decreased. Changes in TMS-evoked cortical EEG response and change in sleep SWA were localized to similar cortical regions and were positively correlated. Together, these results suggest that changes in cortical excitability in opposite directions lead to corresponding changes in local sleep regulation, as reflected by SWA, providing evidence for a tight relationship between cortical plasticity and sleep intensity.

Abstract

Sleep slow-wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the previous time awake and decreasing during sleep, although the underlying mechanisms are unclear. Recent studies have shown that procedures presumably leading to local plastic changes in the cerebral cortex can lead to local changes in SWA during subsequent sleep. To further investigate the connection between cortical plasticity and sleep SWA, in this study we used a paired associative stimulation (PAS) protocol, in which median nerve stimuli were followed at different intervals (25 or 10 ms) by transcranial magnetic stimulation (TMS) pulses to the contralateral cortical hand area. As expected, such a protocol led to a sustained increase (long-term potentiation-like) or decrease (long-term depression-like) of cortical excitability as measured by motor evoked potentials. By using a TMS-compatible high-density electroencephalographic (EEG) system, we also found that, in individual subjects, TMS-evoked cortical responses over sensorimotor cortex changed with different interstimulus intervals. Moreover, during subsequent sleep, SWA increased locally in subjects whose TMS-evoked cortical responses had increased after PAS, and decreased in subjects whose cortical responses had decreased. Changes in TMS-evoked cortical EEG response and change in sleep SWA were localized to similar cortical regions and were positively correlated. Together, these results suggest that changes in cortical excitability in opposite directions lead to corresponding changes in local sleep regulation, as reflected by SWA, providing evidence for a tight relationship between cortical plasticity and sleep intensity.

Statistics

Citations

75 citations in Web of Science®
85 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

100 downloads since deposited on 30 Jan 2009
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2008
Deposited On:30 Jan 2009 12:29
Last Modified:03 Aug 2017 14:59
Publisher:Society for Neuroscience
ISSN:0270-6474
Additional Information:Holder of copyright: The Society for Neuroscience
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.1636-08.2008
PubMed ID:18667623

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations