Search for lepton-flavour-violating decays of the Higgs boson

CMS Collaboration; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Amsler, C; Canelli, F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Taroni, S; Yang, Y; et al

Abstract: The first direct search for lepton-flavour-violating decays of the recently discovered Higgs boson (H) is described. The search is performed in the $H \rightarrow \mu \tau_e$ and $H \rightarrow \mu \tau_h$ channels, where τ_e and τ_h are tau leptons reconstructed in the electronic and hadronic decay channels, respectively. The data sample used in this search was collected in pp collisions at a centre-of-mass energy of $\sqrt{s} = 8$TeV with the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 19.7 inverse femtobarns. The sensitivity of the search is an order of magnitude better than the existing indirect limits. A slight excess of signal events with a significance of 2.4 standard deviations is observed. The p-value of this excess at $M_H = 125$GeV is 0.010. The best fit branching fraction is $B(H \rightarrow \mu \tau) = (0.84 + 0.39 - 0.37)\%$. A constraint on the branching fraction, $B(H \rightarrow \mu \tau) < 1.51\%$ at 95% confidence level is set. This limit is subsequently used to constrain the mu-tau Yukawa couplings to be less than 3.6E-3.

DOI: https://doi.org/10.1016/j.physletb.2015.07.053

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-121370

Accepted Version

Originally published at:
CMS Collaboration; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Amsler, C; Canelli, F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Taroni, S; Yang, Y; et al (2015). Search for lepton-flavour-violating decays of the Higgs boson. Physics Letters B, 749:337-362.
DOI: https://doi.org/10.1016/j.physletb.2015.07.053
Search for lepton-flavour-violating decays of the Higgs boson

The CMS Collaboration∗

Abstract

The first direct search for lepton-flavour-violating decays of the recently discovered Higgs boson (H) is described. The search is performed in the $H \rightarrow \mu \tau_e$ and $H \rightarrow \mu \tau_h$ channels, where τ_e and τ_h are tau leptons reconstructed in the electronic and hadronic decay channels, respectively. The data sample used in this search was collected in pp collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 19.7 fb$^{-1}$. The sensitivity of the search is an order of magnitude better than the existing indirect limits. A slight excess of signal events with a significance of 2.4 standard deviations is observed. The p-value of this excess at $M_H = 125$ GeV is 0.010. The best fit branching fraction is $B(H \rightarrow \mu \tau) = (0.84^{+0.39}_{-0.37})\%$. A constraint on the branching fraction, $B(H \rightarrow \mu \tau) < 1.51\%$ at 95% confidence level is set. This limit is subsequently used to constrain the μ-τ Yukawa couplings to be less than 3.6×10^{-3}.

1 Introduction

The discovery of the Higgs boson (H) [1–3] has generated great interest in exploring its properties. In the standard model (SM), lepton-flavour-violating (LFV) decays are forbidden if the theory is to be renormalizable [4]. If this requirement is relaxed, then the theory is valid only to a finite mass scale, then LFV couplings may be introduced. LFV decays can occur naturally in models with more than one Higgs doublet without abandoning renormalizability [5]. They also arise in supersymmetric models [6–9], composite Higgs boson models [10,11], models with flavour symmetries [12], Randall–Sundrum models [13–15], and many others [16–23].

The presence of LFV couplings would allow $\mu \to e, \tau \to \mu$ and $\tau \to e$ transitions to proceed via a virtual Higgs boson [24,25]. The experimental limits on these have recently been translated into constraints on the branching fractions $B(H \to e\mu, \mu\tau, e\tau)$ [4,26]. The $\mu \to e$ transition is strongly constrained by null search results for $\mu \to e\gamma$ [27], $B(H \to \mu e) < \mathcal{O}(10^{-8})$. However, the constraints on $\tau \to \mu$ and $\tau \to e$ are much less stringent. These come from searches for $\tau \to \mu\gamma$ [28,29] and other rare τ decays [30], $\tau \to e\gamma, \mu$ and $e g - 2$ measurements [27].

Exclusion limits on the electron and muon electric dipole moments [31] also provide complementary constraints. These lead to the much less restrictive limits: $B(H \to \mu\tau) < \mathcal{O}(10\%)$, $B(H \to e\tau) < \mathcal{O}(10\%)$. The observation of the Higgs boson offers the possibility of sensitive direct searches for LFV Higgs boson decays. To date no dedicated searches have been performed. However, a theoretical reinterpretation of the ATLAS $H \to \tau\tau$ search results in terms of LFV decays by an independent group has been used to set limits at the 95% confidence level (CL) of $B(H \to \mu\tau) < 13\%$, $B(H \to e\tau) < 13\%$ [4].

This letter describes a search for a LFV decay of a Higgs boson with $M_H = 125$ GeV at the CMS experiment. The 2012 dataset collected at a centre-of-energy of $\sqrt{s} = 8$ TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$ is used. The search is performed in two channels, $H \to \mu\tau_e$ and $H \to \mu\tau_\tau$, where τ_e and τ_τ are tau leptons reconstructed in the electronic and hadronic decay channels, respectively. The signature is very similar to the SM $H \to \tau\mu\tau_e$ and $H \to \tau\mu\tau_\tau$ decays, where τ_μ is a tau lepton decaying muonically, which have been studied by CMS in Refs. [32,33] and ATLAS in Ref. [34], but with some significant kinematic differences.

The μ comes promptly from the LFV H decay and tends to have a larger momentum than in the SM case. There is only one tau lepton so there are typically fewer neutrinos in the decay. They are highly Lorentz boosted and tend to be collinear with the visible τ decay products.

The two channels are divided into categories based on the number of jets in order to separate the different H boson production mechanisms. The signal sensitivity is enhanced by using different selection criteria for each category. The dominant production mechanism is gluon-gluon fusion but there is also a significant contribution from vector boson fusion which is enhanced by requiring jets to be present in the event. The dominant background in the $H \to \mu\tau_e$ channel is $Z \to \tau\tau$. Other much smaller backgrounds come from misidentified leptons in W+jets, QCD multijets and $t\bar{t}$ events. In the $H \to \mu\tau_\tau$ channel the dominant background arises from misidentified τ leptons in W+jets, QCD multijets and $t\bar{t}$ events. Less significant backgrounds come from $Z \to \tau\tau$ and Z+jets. The principal backgrounds are estimated using data. There is also a small background from SM H decays which is estimated with simulation. The presence or absence of a signal is established by fitting a mass distribution for signal and background using the asymptotic CL$_s$ criterion [35,36]. A “blind” analysis was performed. The data in the signal region were not studied until the selection criteria had been fixed and the background estimate finalized.
2 Detector and data sets

A detailed description of the CMS detector, together with a description of the coordinate system used and the relevant kinematic variables, can be found in ref. [37]. The momenta of charged particles are measured with a silicon pixel and strip tracker that covers the pseudorapidity range $|\eta| < 2.5$ and is inside a 3.8 T axial magnetic field. Surrounding the tracker are a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter, both consisting of a barrel assembly and two endcaps that extend to a pseudorapidity range of $|\eta| < 3.0$. A steel/quartz-fiber Cherenkov forward detector extends the calorimetric coverage to $|\eta| < 5.0$. The outermost component of the CMS detector is the muon system, consisting of gas-ionization detectors placed in the steel flux-return yoke of the magnet to measure the momenta of muons traversing the detector. The two-level CMS trigger system selects events of interest for permanent storage. The first trigger level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events in less than 3.2 μs. The high-level trigger software algorithms, executed on a farm of commercial processors, further reduce the event rate using information from all detector subsystems.

The $H \rightarrow \mu\tau h$ channel selection begins by requiring a single μ trigger with a transverse momentum threshold $p_T^{\mu} > 24$ GeV in the pseudorapidity range $|\eta| < 2.1$, while the $H \rightarrow \mu\tau e$ channel requires a μ-e trigger with p_T thresholds of 17 GeV ($|\eta| < 2.4$) for the μ and 8 GeV ($|\eta| < 2.5$) for the e. Loose e and μ identification criteria are applied at the trigger level. The leptons are also required to be isolated from other tracks and calorimeter energy deposits to maintain an acceptable trigger rate.

Simulated samples of signal and background events are produced using various Monte Carlo (MC) event generators, with the CMS detector response modeled with GEANT4 [38]. Higgs bosons are produced in proton-proton collisions predominantly by gluon-gluon fusion, but also by vector boson fusion and in association with a W or Z boson. It is assumed that the rate of new decays of the H are sufficiently small that the narrow width approximation can be used. The LFV H decay samples are produced with PYTHIA 8.175 [39]. The background event samples with a SM H are generated by POWHEG 1.0 [40–44] with the τ decays modelled by TAUOLA [45]. The MADGRAPH 5.1 [46] generator is used for Z+jets, W+jets, $t\bar{t}$, and diboson production, and POWHEG for single top-quark production. The POWHEG and MADGRAPH generators are interfaced with PYTHIA for parton shower and fragmentation.

3 Event reconstruction

A particle-flow (PF) algorithm [47,48] combines the information from all CMS sub-detectors to identify and reconstruct the individual particles emerging from all vertices: charged hadrons, neutral hadrons, photons, muons, and electrons. These particles are then used to reconstruct jets, hadronic τ decays, and to quantify the isolation of leptons and photons. The missing transverse energy vector is the negative vector sum of all particle transverse momenta and its magnitude is referred to as E_T^{miss}. The variable $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$ is used to measure the separation between reconstructed objects in the detector, where ϕ is the azimuthal angle (in radians) of the trajectory of the object in the plane transverse to the direction of the proton beams.

The large number of proton interactions occurring per LHC bunch crossing (pileup), with an average of 21 in 2012, makes the identification of the vertex corresponding to the hard-scattering process nontrivial. This affects most of the object reconstruction algorithms: jets, lepton isolation, etc. The tracking system is able to separate collision vertices as close as 0.5 mm
along the beam direction \cite{49}. For each vertex, the sum of the p_T^2 of all tracks associated with the vertex is computed. The vertex for which this quantity is the largest is assumed to correspond to the hard-scattering process, and is referred to as the primary vertex in the event reconstruction.

Muons are reconstructed using two algorithms \cite{50}: one in which tracks in the silicon tracker are matched to signals in the muon detectors, and another in which a global track fit is performed, seeded by signals in the muon systems. The muon candidates used in the analysis are required to be successfully reconstructed by both algorithms. Further identification criteria are imposed on the muon candidates to reduce the fraction of tracks misidentified as muons. These include the number of measurements in the tracker and in the muon systems, the fit quality of the global muon track and its consistency with the primary vertex.

Electron reconstruction requires the matching of an energy cluster in the ECAL with a track in the silicon tracker \cite{51,52}. Identification criteria based on the ECAL shower shape, matching between the track and the ECAL cluster, and consistency with the primary vertex are imposed. Electron identification relies on a multivariate technique that combines observables sensitive to the amount of bremsstrahlung along the electron trajectory, the geometrical and momentum matching between the electron trajectory and associated clusters, as well as shower-shape observables. Additional requirements are imposed to remove electrons produced by photon conversions.

Jets are reconstructed from all the PF objects using the anti k_T jet clustering algorithm \cite{53} implemented in FASTJet \cite{54}, with a distance parameter of 0.5. The jet energy is corrected for the contribution of particles created in pileup interactions and in the underlying event. Particles from different pileup vertices can be clustered into a pileup jet, or significantly overlap a jet from the primary vertex below the p_T threshold applied in the analysis. Such jets are identified and removed \cite{55}.

Hadronically decaying τ leptons are reconstructed and identified using the hadron plus strips (HPS) algorithm \cite{56} which targets the main decay modes by selecting PF candidates with one charged hadron and up to two neutral pions, or with three charged hadrons. A photon from a neutral-pion decay can convert in the tracker material into an electron and a positron, which can then radiate bremsstrahlung photons. These particles give rise to several ECAL energy deposits at the same η value and separated in azimuthal angle, and are reconstructed as several photons by the PF algorithm. To increase the acceptance for such converted photons, the neutral pions are identified by clustering the reconstructed photons in narrow strips along the azimuthal direction.

4 Event selection

The event selection consists of three steps. First, a loose selection defining the basic signature is applied. The sample is then divided into categories, according to the number of jets in the event. Finally, requirements are placed on a set of kinematic variables designed to suppress the backgrounds.

The loose selection for the $H \rightarrow \mu\tau_e$ channel requires an isolated μ ($p_T > 25$ GeV, $|\eta| < 2.1$) and an isolated e ($p_T > 10$ GeV, $|\eta| < 2.3$) of opposite charge lying within a region of the detector that allows good identification. The e and μ are required to be separated by $\Delta R > 0.1$. The $H \rightarrow \mu\tau_\mu$ channel requires an isolated μ ($p_T > 30$ GeV, $|\eta| < 2.1$) and an isolated hadronically decaying τ ($p_T > 30$ GeV, $|\eta| < 2.3$) of opposite charge. Leptons are also required to be isolated
from any jet in the event with $p_T > 30\text{ GeV}$ by $\Delta R > 0.4$ and to have an impact parameter consistent with the primary vertex.

The events are then divided into categories within each channel according to the number of jets in the event. Jets are required to pass identification criteria \[\text{[55]},\] have $p_T > 30\text{ GeV}$ and lie within the range $|\eta| < 4.7$. The zero jet category contains signal events predominantly produced by gluon-gluon fusion. The one-jet category contains signal events predominantly produced by gluon-gluon fusion and a negligibly small number of events produced in association with a W or Z boson decaying hadronically. The two jet category is enriched with signal events produced by vector boson fusion.

Table 1: Selection criteria for the kinematic variables after the loose selection.

<table>
<thead>
<tr>
<th>Variable</th>
<th>$H \to \mu \tau$</th>
<th>$H \to \mu \nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{GeV}]</td>
<td>0-jet</td>
<td>1-jet</td>
</tr>
<tr>
<td>$p_{\mu}^T >$</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>$p_{e}^T >$</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$p_{\tau}^T >$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$M_{\mu}^T <$</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>$M_{\nu}^T >$</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>$M_{\tau}^T <$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>[\text{radians}]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The main variable for the discrimination between the signal and background is the collinear mass, M_{col}, which provides an estimator of the reconstructed H mass using the observed decay products. This is constructed using the collinear approximation \[\text{[57]},\] which is based on the observation that since the mass of the H is much greater than the mass of the τ, the τ decay products are highly Lorentz boosted in the direction of the τ. The neutrino momenta can be approximated to be in the same direction as the other visible decay products of the τ and the component of the missing transverse energy in the transverse direction of the visible τ decay products is used to estimate the transverse component of the neutrino momentum. Figure 1 shows M_{col} distribution for the signal and background compared to data for each of the categories in each channel after the loose selection. The simulated signal for $B(H \to \mu \tau) = 100\%$ is shown. The principal backgrounds are estimated with data using techniques described in Section\[\text{[5]},\] There is good agreement between data and the background estimation. The agreement is similar in all of the kinematic variables that are subsequently used to suppress backgrounds. The analysis is performed “blinded” in the region $100 < M_{\text{col}} < 150\text{ GeV}$.

Next, a set of kinematic variables is defined and the criteria for selection are determined by optimizing for $S/\sqrt{S+B}$ where S and B are the expected signal and background event yields in the mass window $100 < M_{\text{col}} < 150\text{ GeV}$. The signal event yield corresponds to the SM H production cross section at $M_H = 125\text{ GeV}$ with $B(H \to \mu \tau) = 10\%$. This value for the LFV H branching fraction is chosen because it corresponds to the limit from indirect measurements as described in Ref. \[\text{[4]}\]. The optimization was also performed assuming $B(H \to \mu \tau) = 1\%$ and negligible change in the optimal values of selection criteria was observed. The criteria for each category, and in each channel, are given in Table 1. The variables used are the lepton transverse momenta p_{ℓ}^T with $\ell = \tau, \mu, e$; azimuthal angles between the leptons $\Delta \phi_{p_{\ell}^T-p_{\ell'}^T}$; azimuthal angle $\Delta \phi_{p_{\ell}^T-E_{\text{miss}}^T}$; the transverse mass $M_{\ell}^T = \sqrt{2p_{\ell}^T E_{\text{miss}}^T (1 - \cos \Delta \phi_{p_{\ell}^T-E_{\text{miss}}^T})}$. Events in the 2-jet cate-
Figure 1: Distributions of the collinear mass M_{col} for signal with $B(H \to \mu\tau) = 100\%$ for clarity, and background processes after the loose selection requirements for the LFV $H \to \mu\tau$ candidates for the different channels and categories compared to data. The shaded grey bands indicate the total uncertainty. The bottom panel in each plot shows the fractional difference between the observed data and the total estimated background. Top left: $H \to \mu\tau_0$ 0-jet; top right: $H \to \mu\tau_0$ 0-jet; middle left: $H \to \mu\tau_0$ 1-jet; middle right: $H \to \mu\tau_0$ 1-jet; bottom left: $H \to \mu\tau_e$ 2-jet; bottom right $H \to \mu\tau_0$ 2-jet.
gory are required to have two jets separated by a pseudorapidity gap ($|\Delta \eta| > 3.5$) and to have a dijet invariant mass greater than 550 GeV. In the $H \rightarrow \mu \tau_e$ channel events in which at least one of the jets identified as coming from a b-quark decay are using the combined secondary-vertex b-tagging algorithm [58] are vetoed, to suppress backgrounds from top quark decays.

5 Background Processes

The contributions of the dominant background processes are estimated with data while less significant backgrounds are estimated using simulation. The largest backgrounds come from $Z \rightarrow \tau\tau$ and from misidentified leptons in W+jets and QCD multijet production.

5.1 $Z \rightarrow \tau\tau$

The $Z \rightarrow \tau\tau$ background contribution is estimated using an embedding technique [33, 59] as follows. A sample of $Z \rightarrow \mu\mu$ events is taken from data using a loose μ selection. The two muons are then replaced with PF particles resulting from the reconstruction of simulated τ lepton decays. Thus, the key features of the event topology such as the jets, missing transverse energy and underlying event are taken directly from data with only the τ decays being simulated. The normalization of the sample is obtained from the simulation. The technique is validated by comparing the τ lepton identification efficiencies estimated with an embedded decay sample, using simulated $Z \rightarrow \mu\mu$ events, to those from simulated $Z \rightarrow \tau\tau$ decays.

5.2 Misidentified leptons

Leptons can arise from misidentified PF objects in W+jets and QCD multijet processes. This background is estimated with data. A sample with similar kinematic properties to the signal sample but enriched in W+jets and QCD multijets is defined. Then the probability for PF objects to be misidentified as leptons is measured in an independent data set, and this probability is applied to the enriched sample to compute the misidentified lepton background in the signal region. The technique is shown schematically in Table 2 in which four regions are defined including the signal and background enriched regions and two control regions used for validation of the technique. It is employed slightly differently in the $H \rightarrow \mu \tau_e$ and $H \rightarrow \mu \tau_h$ channels. The lepton isolation requirements used to define the enriched regions in each channel are slightly different.

In the $H \rightarrow \mu \tau_e$ channel, region I is the signal region in which an isolated μ and an isolated e are required. Region III is a data sample in which all the analysis selection criteria are applied except that one of the leptons is required to be not-isolated. Thus, there are two components: events with an isolated μ and not-isolated e events, as well as events with an isolated e and not-isolated μ events. There is negligible number of signal events in region III. Regions II and IV are data samples formed with the same selection criteria as regions I and III, respectively, but with same-sign rather than opposite-sign leptons. The kinematic distributions of the same-sign samples are very similar to the opposite-sign samples.

The sample in region III is dominated by W+jets and QCD multijets but with small contributions from WW, ZZ and WZ that are subtracted using simulation. The misidentified μ background in region I is then estimated by multiplying the event yield in region III by a factor $f_\mu \cdot \epsilon_{\text{trigger}}$, where f_μ is the ratio of not-isolated to isolated μ’s. It is computed in an independent data sample $Z \rightarrow \mu\mu + X$, where X is an object identified as a μ, in bins of p_T and η. The $Z \rightarrow \mu\mu + X$ sample is corrected for contributions from WW, ZZ and WZ using simulated samples. A correction $\epsilon_{\text{trigger}}$ is made to account for the difference in trigger efficiency for selection...
5.2 Misidentified leptons

Table 2: Schematic to illustrate the application of the method used to estimate the misidentified lepton (ℓ) background. Samples are defined by the charge of the two leptons and by the isolation requirements on each. Charged conjugates are assumed.

<table>
<thead>
<tr>
<th>Region I</th>
<th>Region II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ+1 (isolated)</td>
<td>ℓ+1 (isolated)</td>
</tr>
<tr>
<td>ℓ−2 (isolated)</td>
<td>ℓ+2 (isolated)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region III</th>
<th>Region IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ+1 (isolated)</td>
<td>ℓ+1 (isolated)</td>
</tr>
<tr>
<td>ℓ−2 (not-isolated)</td>
<td>ℓ+2 (not-isolated)</td>
</tr>
</tbody>
</table>

of events with isolated e and not-isolated μ versus the events with isolated e and isolated μ. The misidentified e background is computed in exactly the same way. The technique is validated by using the same-sign data from regions II and IV as shown schematically in Table 2. In Fig. 2 (left) the observed data yield in region II is compared to the estimate from scaling the region IV sample by the measured misidentification rates. The region II sample is dominated by misidentified leptons but also includes small contributions of true leptons arising from vector boson decays, estimated with simulated samples.

![Figure 2: Distributions of M_{col} for region II compared to the estimate from scaling the region IV sample by the measured misidentification rates. The bottom panel in each plot shows the fractional difference between the observed data and the estimate. Left: $H \rightarrow \mu \tau$. Right: $H \rightarrow \mu \tau$.](image)

In the $H \rightarrow \mu \tau_h$ channel, the τ_h candidate can come from a misidentified jet with a number of sources, predominantly W+jets and QCD multijets, but also $Z \rightarrow \mu \mu$+jets and $t\bar{t}$. In this case the enriched background regions are defined with τ_h candidates that pass a looser isolation requirement, but do not pass the signal isolation requirement. The misidentification rate f_{τ_h} is then defined as the fraction of τ_h candidates with the looser isolation that also pass the signal isolation requirement. It is measured in observed $Z \rightarrow \mu \mu + X$ events, where X is an object identified as a τ_h. The misidentification rate measured in $Z \rightarrow \mu \mu + X$ data is checked by comparing to that measured in $Z \rightarrow \mu \mu + X$ simulation and found to be in good agreement. The misidentified background in the signal region (region I) is estimated by multiplying the event yield in region III by a factor $f_{\tau_h}/(1 - f_{\tau_h})$. The procedure is validated with same-sign
6 Systematic uncertainties

To set upper bounds on the signal strength, or determine a signal significance, we use the \(CL_s \) method [35,36]. A binned likelihood is used, based on the distributions of \(M_{\text{col}} \) for the signal and the various background sources. Systematic uncertainties are represented by nuisance parameters, some of which only affect the background and signal normalizations, while others affect the shape and/or normalization of the \(M_{\text{col}} \) distributions.

Table 3: Systematic uncertainties in the expected event yield in %. All uncertainties are treated as correlated between the categories, except where there are two numbers. In this case the number denoted with * is treated as uncorrelated between categories and the total uncertainty is the sum in quadrature of the two numbers.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>(H \rightarrow \mu \tau_e)</th>
<th>(H \rightarrow \mu \tau_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-Jet</td>
<td>1-Jet</td>
</tr>
<tr>
<td>electron trigger/ID/isolation</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>muon trigger/ID/isolation</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>hadronic tau efficiency</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>luminosity</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>(Z \rightarrow \tau \tau) background</td>
<td>3+3*</td>
<td>3+5*</td>
</tr>
<tr>
<td>misidentified (\mu, e) background</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>misidentified (\tau_h) background</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(WW, ZZ+jets) background</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>(t \bar{t}) background</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>(W + \gamma) background</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>b-tagging veto</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\(\mu \tau \) events in the same way as for the \(H \rightarrow \mu \tau_e \) channel above. Figure 2(right) shows the data in region II compared to the estimate from scaling region IV by the misidentification rates.

The method assumes that the misidentification rate in \(Z \rightarrow \mu \mu + X \) events is the same as for \(W+jets \) and QCD processes. To test this assumption the misidentification rates are measured in a QCD jet data control sample. They are found to be consistent. Finally as a cross-check the study has been performed also as a function of the number of jets in the event and similar agreement is found.

5.3 Other backgrounds

The SM H decays in the \(H \rightarrow \tau \tau \) channel provide a small background that is estimated with simulation. This background is suppressed by the kinematic selection criteria and peaks below 125 GeV. The \(W \) leptonic decay from \(t \bar{t} \) produces opposite-sign dileptons and \(E_T^{\text{miss}} \). This background is estimated with simulated \(t \bar{t} \) events using the shape of the \(M_{\text{col}} \) distribution from simulation and a data control region for normalization. The control region is the 2-jet selection but with the additional requirement that at least one of the jets is b-tagged in order to enhance the \(t \bar{t} \) contribution. Other smaller backgrounds come from \(WW, ZZ+jets, W\gamma+jets \) and single top-quark production. Each of these is estimated with simulation.
6.1 Normalization uncertainties

The uncertainties are summarized in Tables 3 and 4. The uncertainties in the e and μ selection efficiency (trigger, identification and isolation) are estimated using the “tag and probe” technique in $Z \rightarrow ee, \mu\mu$ data [59]. The identification efficiency of hadronic τ decays is estimated using the “tag and probe” technique in $Z \rightarrow \tau\tau$ data [56]. The uncertainty in the $Z \rightarrow \tau\tau$ background comes predominantly from the uncertainty in the τ efficiency. The uncertainties in the estimation of the misidentified lepton rate come from the difference in rates measured in different data samples (QCD multijets and W+jets). The uncertainty in the production cross section of the backgrounds that have been estimated by simulation is also included.

There are several uncertainties on the H production cross section, which depend on the production mechanism contribution and the analysis category. They are given in Table 4. These affect the LFV H and the SM H background equally, and are treated as 100% correlated. The parton distribution function (PDF) uncertainty is evaluated by comparing the yields in each category, when spanning the parameter range of a number of different independent PDF sets including CT10 [60], MSTW [61], NNPDF [62] as recommended by PDF4LHC [63]. The scale uncertainty is estimated by varying the renormalization, μ_R, and factorization scales, μ_F, up and down by one half or two times the nominal scale ($\mu_R = \mu_F = M_H/2$) under the constraint $0.5 < \mu_F/\mu_R < 2$ [64]. The underlying event and parton shower uncertainty is estimated by using two different PYTHIA tunes, AUErT2 and Z2*.

Table 4: Theoretical uncertainties in % for Higgs boson production. Anticorrelations arise due to migration of events between the categories and are expressed as negative numbers.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>Gluon-Gluon Fusion</th>
<th>Vector Boson Fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-Jets 1-Jets 2-Jets</td>
<td>0-Jet 1-Jet 2-Jets</td>
</tr>
<tr>
<td>parton distribution function</td>
<td>+9.7 +9.7 +9.7</td>
<td>+3.6 +3.6 +3.6</td>
</tr>
<tr>
<td>renormalization/factorization scale</td>
<td>+8 +10 −30</td>
<td>+4 +1.5 +2</td>
</tr>
<tr>
<td>underlying event/parton shower</td>
<td>+4 −5 −10</td>
<td>+10 <1 −1</td>
</tr>
</tbody>
</table>

6.2 M_{col} shape uncertainties

The systematic uncertainties that lead to a change in the shape of the M_{col} distribution are summarized in Table 5. In the embedded $Z \rightarrow \tau\tau$ M_{col} distribution, used to estimate the $Z \rightarrow \tau\tau$ background, a 1% shift has been observed with respect to $Z \rightarrow \tau\tau$ simulations by comparing the means of both distributions. This occurs only in the $H \rightarrow \mu\tau_\ell$ channel. The M_{col} distribution has been corrected for this effect and a 100% uncertainty on this shift is used as a systematic uncertainty for the possible bias. The jet energy scale has been studied extensively and a standard prescription for corrections [65] is used in all CMS analyses. The overall scale is set using γ+jets events and the most significant uncertainty arises from the photon energy scale. A number of other uncertainties such as jet fragmentation modeling, single pion response and uncertainties in the pileup corrections are also included. The jet energy scale uncertainties

Table 5: Systematic uncertainties in % for the shape of the signal and background templates.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>$H \rightarrow \mu\tau_\ell$</th>
<th>$H \rightarrow \mu\tau_h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hadronic tau energy scale</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>jet energy scale</td>
<td>3–7</td>
<td>3–7</td>
</tr>
<tr>
<td>unclustered energy scale</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$Z \rightarrow \tau\tau$ bias</td>
<td>100</td>
<td>—</td>
</tr>
</tbody>
</table>

$Z \rightarrow \tau\tau$ background, a 1% shift has been observed with respect to $Z \rightarrow \tau\tau$ simulations by comparing the means of both distributions. This occurs only in the $H \rightarrow \mu\tau_\ell$ channel. The M_{col} distribution has been corrected for this effect and a 100% uncertainty on this shift is used as a systematic uncertainty for the possible bias. The jet energy scale has been studied extensively and a standard prescription for corrections [65] is used in all CMS analyses. The overall scale is set using γ+jets events and the most significant uncertainty arises from the photon energy scale. A number of other uncertainties such as jet fragmentation modeling, single pion response and uncertainties in the pileup corrections are also included. The jet energy scale uncertainties
(3–7%) are applied as a function of \(p_T \) and \(\eta \), including all correlations, to all jets in the event, propagated to the missing energy, and the resultant \(M_{\text{col}} \) distribution is used in the fit. There is also an additional uncertainty to account for the unclustered energy scale uncertainty. The unclustered energy comes from jets below 10 GeV and PF candidates not within jets. It is also propagated to the missing transverse energy. These effects cause a shift of the \(M_{\text{col}} \) distribution. The \(\tau \) energy scale is estimated by comparing \(Z \rightarrow \tau \tau \) events in data and simulation. An uncertainty of 3% is derived from this comparison. The uncertainty is applied by shifting the \(p_T \) of the \(\tau \) candidates in the event and using the resultant \(M_{\text{col}} \) distribution in the fit. Finally, the \(M_{\text{col}} \) distributions used in the fit have a statistical uncertainty in each mass bin that is included as an uncertainty which is uncorrelated between the bins.

Potential uncertainties in the shape of the misidentified lepton backgrounds have also been considered. In the \(H \rightarrow \mu \tau_e \) channel the misidentified lepton rates \(f_{\mu e}, f_{e} \) are measured and applied in bins of lepton \(p_T \) and \(\eta \). These rates are all adjusted up or down by one standard deviation (\(\sigma \)) and the differences in the shape of the resultant \(M_{\text{col}} \) distributions are then used as nuisance parameters in the fit. In the \(H \rightarrow \mu \tau_h \) channel the \(\tau \) misidentification rate \(f_{\tau} \) is found to be approximately flat in \(p_T \) and \(\eta \). To estimate the systematic uncertainty the \(p_T \) distribution of \(f_{\tau} \) is fit with a linear function and the rate recomputed from the fitted slope and intercept. The modified \(M_{\text{col}} \) distribution that results from the recomputed background is then used to evaluate the systematic uncertainty.

7 Results

The \(M_{\text{col}} \) distributions after the fit for signal and background contributions are shown in Fig. 3 and the event yields in the mass range \(100 < M_{\text{col}} < 150 \text{ GeV} \) are shown in Table 6. The different channels and categories are combined to set a 95% CL upper limit on the branching fraction of LFV H decay in the \(\mu \tau \) channel, \(B(H \rightarrow \mu \tau) \).

Table 6: Event yields in the signal region, \(100 < M_{\text{col}} < 150 \text{ GeV} \) after fitting for signal and background. The expected contributions are normalized to an integrated luminosity of 19.7 fb\(^{-1}\). The LFV Higgs boson signal is the expected yield for \(B(H \rightarrow \mu \tau) = 0.84\% \) with the SM Higgs boson cross section.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(H \rightarrow \mu \tau_h)</th>
<th>(H \rightarrow \mu \tau_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-Jet</td>
<td>1-Jet</td>
</tr>
<tr>
<td>misidentified leptons</td>
<td>1770 ± 530</td>
<td>377 ± 114</td>
</tr>
<tr>
<td>(Z \rightarrow \tau \tau)</td>
<td>187 ± 10</td>
<td>59 ± 4</td>
</tr>
<tr>
<td>(Z \rightarrow \mu \tau)</td>
<td>46 ± 8</td>
<td>15 ± 3</td>
</tr>
<tr>
<td>(W + \gamma)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(Z \rightarrow \mu \mu)</td>
<td>110 ± 23</td>
<td>20 ± 7</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>2.2 ± 0.6</td>
<td>24 ± 3</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>2.2 ± 1.1</td>
<td>13 ± 3</td>
</tr>
<tr>
<td>SM H background</td>
<td>7.1 ± 1.3</td>
<td>5.3 ± 0.8</td>
</tr>
<tr>
<td>sum of backgrounds</td>
<td>2125 ± 530</td>
<td>513 ± 114</td>
</tr>
<tr>
<td>LFV Higgs boson signal</td>
<td>66 ± 18</td>
<td>30 ± 8</td>
</tr>
<tr>
<td>data</td>
<td>2147</td>
<td>511</td>
</tr>
</tbody>
</table>

The observed and the median expected 95% CL upper limits on the \(B(H \rightarrow \mu \tau) \) for the H mass at 125 GeV are given for each category in Table 7. Combining all the channels, an expected upper limit of \(B(H \rightarrow \mu \tau) < (0.75 ± 0.38)\% \) is obtained. The observed upper limit is \(B(H \rightarrow \mu \tau) < 1.51\% \) which is above the expected limit due to an excess of the ob-
Figure 3: Distributions of the collinear mass M_{col} after fitting for signal and background for the LFV $H \rightarrow \mu\tau$ candidates in the different channels and categories compared to data. The distribution of the simulated LFV Higgs boson sample is shown for the best fit branching fraction of $B(H \rightarrow \mu\tau) = 0.84\%$. The bottom panel in each plot shows the fractional difference between the observed data and the fitted background. Top left: $H \rightarrow \mu\tau_\text{e} \ 0$-jet; top right: $H \rightarrow \mu\tau_\text{e} \ 0$-jet; middle left: $H \rightarrow \mu\tau_\text{e} \ 1$-jet; middle right: $H \rightarrow \mu\tau_\text{h} \ 1$-jet; bottom left: $H \rightarrow \mu\tau_\text{e} \ 2$-jet; bottom right $H \rightarrow \mu\tau_\text{h} \ 2$-jet.
served number of events above the background prediction. The fit can then be used to estimate the branching fraction if this excess were to be interpreted as a signal. The best fit values for the branching fractions are given in Table 7. The limits and best fit branching fractions are also summarized graphically in Fig. 4. The combined categories give a best fit of \(B(H \rightarrow \mu \tau) = (0.84^{+0.39}_{-0.37})\% \). The combined excess is 2.4 standard deviations which corresponds to a \(p \)-value of 0.010 at \(M_H = 125 \) GeV. The observed and expected \(M_{col} \) distributions combined for all channels and categories are shown in Fig. 5. The distributions are weighted in each channel and category by the \(\frac{S}{\sqrt{S+B}} \) ratio, where \(S \) and \(B \) are respectively the signal and background yields corresponding to the result of the global fit. The values for \(S \) and \(B \) are obtained in the \(100 < M_{col} < 150 \) GeV region.

Table 7: The expected upper limits, observed upper limits and best fit values for the branching fractions for different jet categories for the \(H \rightarrow \mu \tau \) process. The one standard-deviation probability intervals around the expected limits are shown in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Expected Limits</th>
<th>Observed Limits</th>
<th>Best Fit Branching Fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-Jet (%)</td>
<td>1-Jet (%)</td>
<td>2-Jets (%)</td>
</tr>
<tr>
<td>(\mu \tau_e)</td>
<td>(<1.32 (\pm 0.67))</td>
<td>(<1.66 (\pm 0.85))</td>
<td>(<3.77 (\pm 1.92))</td>
</tr>
<tr>
<td>(\mu \tau_h)</td>
<td>(<2.34 (\pm 1.19))</td>
<td>(<2.07 (\pm 1.06))</td>
<td>(<2.31 (\pm 1.18))</td>
</tr>
<tr>
<td>(\mu \tau)</td>
<td>(<0.75 (\pm 0.38))</td>
<td></td>
<td>(0.84^{+0.39}_{-0.37})</td>
</tr>
</tbody>
</table>

8 Limits on lepton-flavour-violating couplings

The constraint on \(B(H \rightarrow \mu \tau) \) can be interpreted in terms of LFV Yukawa couplings [4]. The LFV decays \(H \rightarrow e\mu, e\tau, \mu\tau \) arise at tree level from the assumed flavour-violating Yukawa interactions, \(Y_{\ell\ell'} \), where \(\ell^a, \ell^b \) denote the leptons, \(\ell^a, \ell^b = e, \mu, \tau \) and \(\ell^a \neq \ell^b \). The decay width \(\Gamma(H \rightarrow \ell^a \ell^b) \) in terms of the Yukawa couplings is given by:

\[
\Gamma(H \rightarrow \ell^a \ell^b) = \frac{m_H}{8\pi} \left(|Y_{\ell^a \ell^b}|^2 + |Y_{\ell^a \ell^b}|^2 \right),
\]

and the branching fraction by:

\[
B(H \rightarrow \ell^a \ell^b) = \frac{\Gamma(H \rightarrow \ell^a \ell^b)}{\Gamma(H \rightarrow \ell^a \ell^b) + \Gamma_{SM}}.
\]

The SM \(H \) decay width is assumed to be \(\Gamma_{SM} = 4.1 \text{ MeV} \) [66] for \(M_H = 125 \) GeV. The 95% CL constraint on the Yukawa couplings derived from \(B(H \rightarrow \mu \tau) < 1.51\% \) and the expression for the branching fraction above is:

\[
\sqrt{|Y_{\mu \tau}|^2 + |Y_{\tau \mu}|^2} < 3.6 \times 10^{-3}.
\]

Figure 6 compares this result to the constraints from previous indirect measurements.
Figure 4: Left: 95% CL Upper limits by category for the LFV $H \to \mu \tau$ decays. Right: best fit branching fractions by category.

Figure 5: Left: Distribution of M_{col} for all categories combined, with each category weighted by significance ($S/(S+B)$). The significance is computed for the integral of the bins in the range $100 < M_{col} < 150$ GeV using $B(H \to \mu \tau) = 0.84\%$. The simulated Higgs signal shown is for $B(H \to \mu \tau) = 0.84\%$. The bottom panel shows the fractional difference between the observed data and the fitted background. Right: background subtracted M_{col} distribution for all categories combined.
Figure 6: Constraints on the flavour-violating Yukawa couplings, $|Y_{\mu\tau}|$ and $|Y_{\tau\mu}|$. The black dashed lines are contours of $B(H \rightarrow \mu\tau)$ for reference. The expected limit (red solid line) with one sigma (green) and two sigma (yellow) bands, and observed limit (black solid line) are derived from the limit on $B(H \rightarrow \mu\tau)$ from the present analysis. The shaded regions are derived constraints from null searches for $\tau \rightarrow 3\mu$ (dark green) and $\tau \rightarrow \mu\gamma$ (lighter green). The yellow line is the limit from a theoretical reinterpretation of an ATLAS $H \rightarrow \tau\tau$ search [4]. The light blue region indicates the additional parameter space excluded by our result. The purple diagonal line is the theoretical naturalness limit $Y_{ij}Y_{ji} \leq m_i m_j / v^2$.

9 Summary

The first direct search for lepton-flavour-violating decays of a Higgs boson to a μ-τ pair, based on the full 8 TeV data set collected by CMS in 2012 is presented. It improves upon previously published indirect limits [4, 26] by an order of magnitude. A slight excess of events with a significance of 2.4 σ is observed, corresponding to a p-value of 0.010. The best fit branching fraction is $B(H \rightarrow \mu\tau) = (0.84^{+0.39}_{-0.37})\%$. A constraint of $B(H \rightarrow \mu\tau) < 1.51\%$ at 95% confidence level is set. The limit is used to constrain the Yukawa couplings, $\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 3.6 \times 10^{-3}$. It improves the current bound by an order of magnitude.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Re-
public of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.

References

References

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev2, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, F. Zhang5, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.9

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran10, A. Ellithi Kamel11, M.A. Mahmoud12, A. Radi13,14

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva
DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,
S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles,
J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, E. Chapon, C. Charlot, E. Chapon, C. Chapon, C. Chapon,
C. Charlot, E. Conte, D. Contardo, B. Courbon, J.-M. Drees, E. Faure, C. Favaro, F. Ferri,
S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles,
J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, E. Chapon, C. Charlot, E. Conte, D. Contardo, B. Courbon,

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, E. Chapon, C. Charlot, E. Conte, D. Contardo, B. Courbon,

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute
Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,
CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique
Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, C. Bernet, G. Boudoul, E. Bouvier, S. Brochet, C.A. Carrillo
Montoya, J. Chasserat, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni,
J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuiller, L. Mirabito,
A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander
Donckt, P. Verdier, S. Viret, H. Xiao

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia
L. Rurua

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, A. Heister, K. Klein,
B. Wittmer, V. Zhukov

RWTH Aachen University, II. Physikalisches Institut A, Aachen, Germany
M. Ata, M. Brodschi, E. Dietz-Laursonn, D. Duchhardt, M. Erdmann, R. Fischer, A. Güth,
T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer,
M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, H. Reithler,
S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle,
B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann, A. Nowack, I.M. Nugent,
C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, U. Behrens, A.J. Bell, A. Bethani, K. Borras,
A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez
Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke,
J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel, H. Jung,
A. Kalogeropoulos, O. Karacheban, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol,
D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, B. Lutz, R. Mankel,

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris, E. Tziaferi

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
A. Makovec, P. Raics, Z.L. Trocsanyi, B. Újvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, R. Gupta, U.Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, P. Vitullo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangottini, L. Fano, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia, A. Spiezia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma, Università di Roma, Roma, Italy

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, D.H. Moon, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh
Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz,
A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki,
K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki,
J. Krolikowski, M. Misiura, M. Olszewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret
Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
P. Bunin, I. Golutvin, I. Gorbunov, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev,
A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov,
S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin,
I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev
Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, F.I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath,

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, V. Dutta, K. Flowers,

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Shirkhولادزه, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
E. Brownson, S. Malik, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kvitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin,
C. Neu, E. Wolfe, J. Wood

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA
A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin,
W.H. Smith, D. Taylor, C. Vuosalo, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de
Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Université Libre de Bruxelles, Bruxelles, Belgium
9: Also at Joint Institute for Nuclear Research, Dubna, Russia
10: Also at Suez University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at University of Debrecen, Debrecen, Hungary
20: Also at University of Visva-Bharati, Santiniketan, India
21: Now at King Abdulaziz University, Jeddah, Saudi Arabia
22: Also at University of Ruhuna, Matara, Sri Lanka
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad
University, Tehran, Iran
26: Also at Università degli Studi di Siena, Siena, Italy
27: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
28: Also at Purdue University, West Lafayette, USA
29: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
30: Also at Institute for Nuclear Research, Moscow, Russia
31: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
32: Also at National Research Nuclear University ‘Moscow Engineering Physics
Institute’ (MEPhI), Moscow, Russia
33: Also at California Institute of Technology, Pasadena, USA
34: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
35: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
36: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
37: Also at University of Athens, Athens, Greece
38: Also at Paul Scherrer Institut, Villigen, Switzerland
39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
40: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
41: Also at Gaziosmanpasa University, Tokat, Turkey
42: Also at Adiyaman University, Adiyaman, Turkey
43: Also at Mersin University, Mersin, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Piri Reis University, Istanbul, Turkey
46: Also at Anadolu University, Eskisehir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Izmir Institute of Technology, Izmir, Turkey
49: Also at Necmettin Erbakan University, Konya, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Marmara University, Istanbul, Turkey
52: Also at Kafkas University, Kars, Turkey
53: Also at Yildiz Technical University, Istanbul, Turkey
54: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
55: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
56: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
57: Also at Argonne National Laboratory, Argonne, USA
58: Also at Erzincan University, Erzincan, Turkey
59: Also at Texas A&M University at Qatar, Doha, Qatar
60: Also at Kyungpook National University, Daegu, Korea